

Belle Results from e^+e^- annihilation in the vicinity of $\Upsilon(5S)$

Todd Pedlar, Luther College *For the Belle Collaboration* Heavy Quarks & Leptons 2016 24 May 2016

T. K. Pedlar Belle Results near Y(5S)

Belle @ KEK

- @KEKB Asymmetric e+e- collider
- Mainly operated at Υ(4S)
- World's largest data samples at most bottomonium resonances
- Focus:
 - 121.4 fb⁻¹ at Υ(5S)
 - ~20 fb⁻¹ of scan data from about 10.6 to 11.0 GeV

Topics for today's talk

- An unexpected and remarkable bounty of physics results have been obtained from studies at Belle of data taken above the Y(4S), especially near the Y(10860), usually identified as Y(5S)
- My task today is to give a tour of these results, and highlight the most recent results which shed new light on the nature of $\Upsilon(5S)$ and the charged Z_b states

Advert: two other Belle talks which treat subjects closely related to the present talk:

Saurabh Sandilya, Transitions and Decays of Bottomonium States

(Spectroscopy II, today, 10:55)

Bilas Pal, Charmless B_s Decays

(Rare Decays II, Thursday, 16:55)

Topics for today's talk

- Brief synopsis of older results and historical developments using the $\Upsilon(5S)$ data sample at Belle
- Measurement of various cross sections as a function of energy in the range 10.63-11.02 GeV (the $\Upsilon(5S)$ and $\Upsilon(6S)$ region)
 - Measurement of R_b

24 May 2016

- Measurement of cross sections for $e^+e^- \rightarrow \pi^+ \pi^- \Upsilon(nS)$
- And for $e^+e^- \rightarrow \pi^+ \pi^- h_b(n\mathbf{P})$
- Measurement of $e^+e^- \rightarrow B^*\overline{B}^{(*)}\pi$ at the $\Upsilon(5S)$ and the Z_b

Observation of Anomalously Large Cross Sections

- The Υ(5S) has been the subject of interest in terms of its nature since its discovery by CUSB and CLEO in 1985
- In 2008 with ~24 fb⁻¹ of e⁺e⁻ annihilations taken at the Υ(5S), Belle reported a remarkable discovery – anomalously high rates for transitions to lower bottomonia

K.-F. Chen, et al (Belle) PRL 100, 112001 (2008)

Scan of Y(5S) region to study these anomalies

- Subsequently Belle undertook a scan of the region at and above Υ(5S)
- A discrepancy observed between the peak of cross sections for bb vs Υ ππ

 R_b :M = 10879 +/- 3 MeV $R_{\gamma \pi \pi}$:M = 10888 +/- 3 MeV

 Only a 2σ difference: 9 +/- 4 MeV, but led to speculation about a mixing of Y(5S) with a Y_b analogous to the Y(4260) in the charmonium region

These anomalies motivate a much increased data sample in the *Y*(10860) region (121.4 fb⁻¹ plus scan data)

K.-F. Chen, et al (Belle) PRD 82, 091106 (2010)

2010 observation by CLEO of $\pi\pi$ h_c in data taken above open charm threshold motivates h_b searches at Υ (5S)

80

60

(a)

• CLEO reported observation of $\pi\pi$ h_c at ψ (4160) and an indication of even higher rates at Y(4260)

9.8

 $M_{miss}(GeV/c^2)$

10

Υ(3S)

10.4

 $h_{\rm b}(2P)$

10.2

I. Adachi et al (Belle) PRL 107, 041803 (2011) Discovery of h_b Y(2S) 40000 Searches in $\pi\pi$ missing Events / 5 MeV/c² 30000 Υ(1S) mass spectrum lead to →Y(1S) discovery of the two 20000 $h_{h}(1P)$ Y(3S) **lowest lying singlet P** Υ(1D) 10000 states in bottomonium

 The rates for these decays are even more intriguing than the rates of $\Upsilon(5S)$ to $\pi\pi\Upsilon(nS)$ (and very reminiscent of $\Upsilon(4260)$)

9.6

9.4

- If these were direct three-body decays, these transitions require heavy quark spin flip, which must necessarily cause a suppression relative to $\pi\pi\Upsilon(nS)$
- Natural to ponder the reason these transitions occur so readily

Anomalously large h_b production leads to study of resonant substructure: and another discovery

A. Bondar et al (Belle) PRL 109, 122001 (2012)

Resonant substructure reveals that all $\Upsilon \pi \pi$ and $h_{\rm b} \pi \pi$ processes show evidence of Z_b states

In the case of transitions to $h_{\rm b}\pi\pi$ all production occurs through an intermediate Z_b

Min. 4-quark content (2 b quarks and charged)

Masses very near BB* and B*B* thresholds! Suggests relationship to them (Molecules?)

At this point we are left with (at least) the following interesting open questions

- Can the marginal discrepancy between the $b\overline{b}$ and the $\Upsilon\pi\pi$ cross sections be resolved?
- Can we learn anything about the $\Upsilon(5S)$ and $\Upsilon(6S)$ from studies of the $h_b \pi \pi$ cross section vs. \sqrt{s} ? (and do the Z_b continue to saturate the rate for $h_b \pi \pi$ above $\Upsilon(5S)$?)
- Can we learn anything about the nature of the Z_b states as possibly molecular by looking at the $[B^{(*)} B^{(*)}]^{\mp} \pi^{\pm}$ cross sections in this region?

$b\overline{b}$ Cross Sections

2010 energy scan: 16 points 1fb^{-1} for $\sigma[\Upsilon(nS) \pi\pi]$ 61 point 50pb^{-1} 5MeV step for R_b continuum point 1fb^{-1} @ 10.52GeV Use also:

2007 energy scan: 6 points $\sim 1 fb^{-1}$ Y(5S) on-resonance point 121fb⁻¹

$$R_b \equiv \sigma(b\bar{b})/\sigma_{\mu\mu}^0$$

$$N_{i} = \mathcal{L}_{i} \times \left[\sigma_{b\bar{b},i} \epsilon_{b\bar{b},i} + \sigma_{q\bar{q},i} \epsilon_{q\bar{q},i} + \sum \sigma_{\mathrm{ISR},i} \epsilon_{\mathrm{ISR},i} \right]$$

 R_b : Remove qq using continuum data R'_b : also remove ISR using simulation

- BaBAR did not remove ISR contribution (so for comparison, we did not)
- Belle R_b slightly higher but consistent with BaBAR

D. Santel et al (Belle) PRD 93, 011101(R) (2016)

B. Aubert *et al.* (BABAR) PRL 102, 012001 (2009)

bb Cross Sections

• Fit the R'_b spectrum to

$$\begin{split} \mathcal{F}(\sqrt{s}) &= |A_{\rm ic}|^2 + |A_{\rm c} + A_{\rm 5S} e^{i\phi_{\rm 5S}} f_{\rm 5S}(\sqrt{s}) \\ &+ A_{\rm 6S} e^{i\phi_{\rm 6S}} f_{\rm 6S}(\sqrt{s})|^2, \end{split}$$

interference with flat continuum (A_c)

- Red dot-dot-dashed curve is the resonant Υ(5S) and Υ(6S) functions
- Reasonable agreement with BaBAR's resonance parameter results from their similar analysis

Quantity	Belle <i>R</i> ['] _b Results	Babar <i>R_b</i> Results	D. Santel et al (Belle)
M ₅	$10881.8^{+1.0}_{-1.1}\ \pm\ 1.2\ MeV$	$10876 \pm 2 \text{ MeV}$	PRD 93, 011101(R) (2016)
Γ_5	48. 5 ^{+1.9} +2.0 -2.8 MeV	$37 \pm 3 \text{ MeV}$	B. Aubert et al. (BABAR)
M ₆	10987.5 \pm 1.1 $^{+0.9}_{-1.0}$ MeV	$10996 \pm 2 \text{ MeV}$	PRL 102, 012001 (2009)
Γ ₆	61 ^{+1.7} +1.3 -1.6 -2.4 MeV	$37 \pm 3 \text{ MeV}$	40

 $e^+e^- \rightarrow \pi^+ \pi^- \Upsilon(nS)$

- And now to consider the key motivating question for the new scan: the difference between the resonance peaks in π⁺ π⁻Υ(nS) as compared to in R'_b
- Data sample: the 121.4 fb⁻¹ sample near 10.866 GeV and 22 scan points each of ~1 fb⁻¹ from 10.63-11.02 GeV
- Event selection includes the requirement of exactly four charged tracks (identified as $\pi^+\pi^-\mu^+\mu^-$)

D. Santel et al (Belle) PRD 93, 011101(R) (2016)

- At each √s point, obtain the peak yield of π⁺π⁻Υ(nS); then plot RY(nS)π⁺ π⁻ and fit to two BW amplitudes and possible continuum
- Continuum consistent with zero (marked contrast 'with R'_b more on this at the end)
- Compare resonance parameters to those obtained with R'_b

Quantity	From $\pi^+ \pi^- \Upsilon(nS)$	From R_b'
M ₅	10891.13.2 ^{+0.6} _{-1.7} MeV	10881. $8^{+1.0}_{-1.1} \pm 1.2$ MeV
Γ_5	53.7 ^{+7.1} +1.3 -5.6 -5.4 MeV	48. 5 ^{+1.9} _{-1.8} ^{+2.0} _{-2.8} MeV
M ₆	10987. 5 ^{+6.4} +9.0 MeV	10987. 5 \pm 1. 1 $^{+0.9}_{-1.0}$ MeV
Γ_6	61 ⁺⁹ ₋₁₉ ⁺² ₋₂₀ MeV	61 ^{+1.7} ^{+1.3} _{-2.4} MeV

Consistency between the two is about 2.5 σ for $\Upsilon(5S)$ and < 2σ for $\Upsilon(6S)$

D. Santel et al (Belle) PRD 93, 011101(R) (2016)

A. Abdsselam et al (Belle)

Xiv:1508.06562

$e^+e^- \rightarrow \pi^+ \pi^- h_h(nP)$

- Until now, no evidence for such transitions except in the large data sample taken at 10.866 GeV, on the $\Upsilon(5S)$ resonance
- Our initial Z_h study showed that while the $\pi^+ \pi^- \Upsilon(nS)$ cross section has a large contribution from intermediate Z_h states, $\pi^+ \pi^- h_h(nP)$ at 10.866 GeV, is all due to Z_h
- Enhance $\pi^+ \pi^- h_h(nP)$ sample through requirement of consistency with intermediate Z_h :

 $10.59 \,\mathrm{GeV}/c^2 < M_{\mathrm{miss}}(\pi^{\pm}) < 10.67 \,\mathrm{GeV}/c^2$

- Reconstruct $\pi\pi$ missing mass and fit for yield of h_h at each \sqrt{s} point
- Produce the cross section as a function of \sqrt{s}

 $e^+e^- \rightarrow \pi^+ \pi^- h_h(nP)$

- Fit the spectrum of π⁺ π⁻h_b(nP) cross sections to Breit-Wigner amplitudes for the two resonances and continuum
- Continuum contribution in resulting fit is $< 1.5\sigma$; the default fit does not use it
- Results are consistent with results for the previously described cross sections for $\pi^+ \pi^- \Upsilon(nS)$

Quantity	From $\pi^+ \pi^- \Upsilon(nS)$	From $\pi^+ \pi^- h_b(nP)$
M ₅	10891.13.2 $^{+0.6}_{-1.7}$ MeV	10884.7 ^{+3.6+8.9} _{-3.4} MeV
Γ_5	53.7 ^{+7.1} +1.3 _{-5.6} MeV	40.6 ^{+12.7} +1.1 -8.0 -19.1 MeV
M ₆	10987. 5 ^{+6.4} +9.0 MeV	10999. 0 ^{+7.3 +16.9} MeV
Γ ₆	61 ⁺⁹ ₋₁₉ ⁺² ₋₂₀ MeV	27 ^{+27 +5} _{-11 -12} MeV

A. Abdsselam et al (Belle) arXiv:1508.06562

 $e^+e^- \rightarrow \pi^+ \pi^- h_b(nP)$

A. Abdsselam et al (Belle) arXiv:1508.06562

• When we sum the data in several points on the $\Upsilon(6S)$ resonance, we find:

Significance figures include syst errors

 $e^+e^- \rightarrow \pi^+ \pi^- h_b(nP)$

A. Abdsselam et al (Belle) arXiv:1508.06562

To test the cross sections for $\pi^+ \pi^- h_b(nP)$ for contribution from the intermediate charged Z_b states, we again construct the missing mass against single charged pions:

Consistent with dominance of Z_b but statistics insufficient to distinguish contributions from one or both states

> For more specificity, must (unfortunately) wait for Belle II

Study of $e^+e^- \rightarrow [B^*B^{(*)}]^+\pi^{\pm}$

A. Garmash et al (Belle) arXiv:1512.07419 (accepted, PRL)

- Our measurements of $e^+e^- \rightarrow \pi^+ \pi^- h_b(nP)$ are dominated by $e^+e^- \rightarrow Z_b^{\pm}\pi^{\mp}$ and we'd like to know more about the nature of these states as potential molecular states of $B^*B^{(*)}$
- This analysis utilizes the full 121 fb⁻¹ data sample at 10.866 GeV
- Method: reconstruct a *B* and π , and examine the missing mass spectrum of $B\pi$:
 - *B* reconstructed in the following modes:

 $B^+ \to J/\psi K^{(*)+}, \overline{D}^{(*)0}\pi^+; B^0 \to J/\psi K^{(*)0}, D^{(*)-}\pi^+$

- Signal $BB^*\pi$ events produce a peak in the spectrum at $m(B^*) \approx 5.325 \ GeV$
- Signal $B^*B^*\pi$ events produce a peak in the spectrum at $m(B^*) + (m(B^*) m(B)) \approx 5.370 \text{ GeV}$ due to the fact that a photon from $B^* \rightarrow B\gamma$ is not reconstructed

- (Left) Invariant mass of B meson daughters
- (Right) Rescaled missing mass against $B\pi$ combinations $(M^*_{miss}(B\pi) = M_{miss}(B\pi) + M(B) - m_{B,PDG}$, used to improve resolution)
- Wrong sign data models background well in $M^*_{miss}(B\pi)$

These represent the first observation of $e^+e^- \rightarrow [B^{(*)} \ B^{(*)}]^{\mp}\pi^{\pm}$ with the significance for $[BB^*]^{\mp}\pi^{\pm}$ being 9.3 σ and for $[B^*B^*]^{\mp}\pi^{\pm}$, 8.1 σ

A. Garmash et al (Belle) arXiv:1512.07419 (accepted, PRL)

• At right are plots of
$$M_{miss}(\pi)$$
 which
will show excesses at Z_b masses if
 $Z_b \rightarrow [B^* B^{(*)}].$

 Again, WS data provides background estimate

24 May 2016

- Fits to the data done for four model
 - Model-0 One Z_b amplitude
 - Model-1 One Z_b amplitude + NR
 - Model-2 Two Z_b amplitudes
 - Model-3 NR only

Interestingly, though kinematically favored, no BB* component in the decays of Z_b (10650)!

A. Garmash et al (Belle) arXiv:1512.07419 (accepted, PRL)

Study of $e^+e^- \rightarrow [B^*B^{(*)}]^{\mp}\pi^{\pm}$

 Finally, with the present results using Model-0 one can also determine branching fractions for the two Z_b states, assuming that the observed decays of the Z_b saturate the total rates

TABLE III: *B* branching fractions for the $Z_b^+(10610)$ and $Z_b^+(10650)$ decays. The first quoted uncertainty is statistical; the second is systematic.

Channel	Fraction, %			
	$Z_b(10610)$	$Z_b(10650)$		
$\Upsilon(1S)\pi^+$	$0.54_{-0.13-0.08}^{+0.16+0.11}$	$0.17^{+0.07+0.03}_{-0.06-0.02}$		
$\Upsilon(2S)\pi^+$	$3.62^{+0.76+0.79}_{-0.59-0.53}$	$1.39^{+0.48+0.34}_{-0.38-0.23}$		
$\Upsilon(3S)\pi^+$	$2.15_{-0.42-0.43}^{+0.55+0.60}$	$1.63^{+0.53+0.39}_{-0.42-0.28}$		
$h_b(1P)\pi^+$	$3.45_{-0.71-0.63}^{+0.87+0.86}$	$8.41^{+2.43+1.49}_{-2.12-1.06}$		
$h_b(2P)\pi^+$	$4.67^{+1.24+1.18}_{-1.00-0.89}$	$14.7^{+3.2+2.8}_{-2.8-2.3}$		
$B^+\bar{B}^{*0} + \bar{B}^0B^{*+}$	$85.6^{+1.5+1.5}_{-2.0-2.1}$	_		
$B^{*+}\bar{B}^{*0}$	_	$73.7^{+3.4+2.7}_{-4.4-3.5}$		

As expected, dominant decay modes of the Z_b are the $[B^{(*)} B^{(*)}]^{\mp}$ modes No BB* component in the decays of Z_b (10650)!

One final summary point concerning $\Upsilon(5S)$

- *R*[']_b fit showed VERY strong interference between the resonances and continuum
- The $\pi^+ \pi^- \Upsilon(nS)$ and $\pi^+ \pi^- h_b(nP)$ show evidence of no continuum contribution
- Another process expected to have little continuum contribution is $[B^{(*)} B^{(*)}]^{\mp} \pi^{\pm}$, and the rates for this at $\Upsilon(5S)$ and $\Upsilon(6S)$ are saturated by $Z_b^{\ \mp} \pi^{\pm}$
- This all leads us to question the makeup of the resonant part of the R'_b fit

One final summary point concerning $\Upsilon(5S)$

• If we compare amplitudes (sum of the squares times relevant phase space factors) from the fits for the various $\Upsilon(5S)$ transitions reported today to the resonance amplitude from the R'_b study, and compute the ratio, we find:

Process (x)	Cumulative fraction P
$\pi^+\pi^-\Upsilon(nS)$	0.170 ± 0.009
$\pi^+\pi^-h_b(n\mathbf{P}), \pi^0\pi^0\Upsilon(nS), \pi^0\pi^0h_b(n\mathbf{P})$	0.420 ± 0.004
$[B^*B^{(*)}]^{\mp}\pi^{\pm}$ and $[B^*B^{(*)}]^0\pi^0$	1.09 ± 0.15

- If P = 1, the R'_b resonant amplitude is saturated by these observed amplitudes
- little room for the ~20% known for $B_s^{(*)}B_s^{(*)}$ at the resonance...(yes, errors are large)
- ...and calls into question the use of a flat continuum as is used in *R[']_b* measurements, and our understanding of the massive interference that is observed (many bb thresholds are crossed in this region, too)

Upshot: Mass/width obtained from R'_b fits seem unreliable; best to use continuum-free processes such as $\pi^+ \pi^- \Upsilon(nS)$ and $\pi^+ \pi^- h_b(nP)$.

D. Santel et al (Belle) PRD 93, 011101(R) (2016)

Conclusions

- 2008-2016 have been very productive for Belle in bottomonium-related physics at and above $\Upsilon(5S)$, and we continue to study the Belle data, looking forward to Belle II
- Recent results presented here today include
 - New measurements of R'_b and cross sections for $e^+e^- \rightarrow \pi^+ \pi^- \Upsilon(nS), \pi^+ \pi^- h_b(nP)$ near $\Upsilon(5S)$ and $\Upsilon(6S)$
 - First evidence for $\pi^+ \pi^- \Upsilon(nS)$ at $\Upsilon(6S)$
 - First evidence for $\pi^+ \pi^- h_b(1P)$ at $\Upsilon(6S)$
 - First observation of $\pi^+ \pi^- h_b(2P)$ at $\Upsilon(6S)$
 - Questions re: validity of resonance parameter evaluation via R'_b
 - Confirmation of the dominance of the $e^+e^- \rightarrow \pi^+ \pi^- h_b(nP)$ process by intermediate Z_b at $\Upsilon(6S)$ just as at $\Upsilon(5S)$
 - First observation of the processes $e^+e^- \rightarrow [B^*B^{(*)}]^{\mp}\pi^{\pm}$, showing dominance by amplitudes for $Z_b \rightarrow [B^*B^{(*)}]^{\mp}$ and strengthening the molecular hypothesis for Z_b

BELLE

Backup Slides

Z_b intermediate states saturate the rates for h_b production from $\Upsilon(5S)$

All of the h_b production from Υ (5S) proceeds through the Z_b

 While interesting or itself, this led importantly to an excellent selector for h_b – which made observations of radiative decays of h_b possible:

$$\mathcal{B}[h_b(1P) \to \eta_b(1S)\gamma] = (49.2 \pm 5.7^{+5.6}_{-3.3})\%$$

$$\mathcal{B}[h_b(2P) \to \eta_b(1S)\gamma] = (22.3 \pm 3.8^{+3.1}_{-3.3})\%$$

$$\mathcal{B}[h_b(2P) \to \eta_b(2S)\gamma] = (47.5 \pm 10.5^{+6.8}_{-7.7})\%$$

R. Mizuk et al (Belle) PRL 109, 232002 (2012)

$e^+e^- \rightarrow \pi^+ \pi^- h_b(n\mathbf{P})$

- Fit the spectrum of π⁺ π⁻h_b(nP) cross sections to Breit-Wigner amplitudes for the two resonances and continuum
- Continuum contribution in resulting fit is < 1.5 σ ; the default fit does not use it
- Results are consistent with results for the previously described cross sections for $\pi^+ \pi^- \Upsilon(nS)$

Quantity	From $\pi^+ \pi^- \Upsilon(nS)$	From $\pi^+ \pi^- h_b(nP)$
M ₅	$10891.13.2^{+0.6}_{-1.7}$ MeV	10884.7 ^{+3.6+8.9} _{-3.4} MeV
Γ_5	53.7 ^{+7.1} +1.3 -5.6 -5.4 MeV	40.6 ^{+12.7} +1.1 -8.0 -19.1 MeV
M ₆	10987.5 ^{+6.4} _{-2.5} ^{+9.0} _{-2.1} MeV	10999. 0 ^{+7.3 +16.9} MeV
Γ_6	61 ⁺⁹ ₋₁₉ ⁺² ₋₂₀ MeV	27 ^{+27 +5} _{-11 -12} MeV

A. Abdsselam et al (Belle) arXiv:1508.06562

Study of $e^+e^- \rightarrow [B^*B^{(*)}]^{\mp}\pi^{\pm}$

A. Garmash et al (Belle) arXiv:1512.07419 (accepted, PRL)

TABLE I: Summary of fit results to the $M_{\text{miss}}(\pi)$ distributions for the three-body $BB^*\pi$ and $B^*B^*\pi$ final states.

Mode	Parameter	Model-0	Model-1		Model-2		Model-3
			Solution 1	Solution 2	Solution 1	Solution 2	
$BB^*\pi$	$f_{Z_b(10610)}$	1.0	1.45 ± 0.24	0.64 ± 0.15	1.01 ± 0.13	1.18 ± 0.15	_
	$f_{Z_b(10650)}$	_	_	_	0.05 ± 0.04	0.24 ± 0.11	_
	$\phi_{Z_b(10650)}$, rad.	_	_	_	-0.26 ± 0.68	-1.63 ± 0.14	_
	$f_{ m nr}$	-	0.48 ± 0.23	0.41 ± 0.17	_	_	1.0
	$\phi_{\rm nr}$, rad.	_	-1.21 ± 0.19	0.95 ± 0.32	_	_	_
	$-2 \log \mathcal{L}$	-304.7	-300.6	-300.5	-301.4	-301.4	-344.5
$B^*B^*\pi$	$f_{Z_b(10650)}$	1.0	1.04 ± 0.15	0.77 ± 0.22			_
	$f_{ m nr}$	_	0.02 ± 0.04	0.24 ± 0.18			1.0
	$\phi_{\rm nr}$, rad.	_	0.29 ± 1.01	1.10 ± 0.44			_
	$-2\log \mathcal{L}$	-182.4	-182.4	-182.4			-209.7

- Model-3 (non-resonant amplitude only) is ruled out
- Model-0 is kept as nominal fit; addition of either an NR component or allowance of second Z_b only marginally improves results (and adds multiple solutions in likelihood function)

 $e^+e^- \rightarrow [BB^*]^{\mp}\pi^{\pm}$ dominated by Z_b (10610) $e^+e^- \rightarrow [B^*B^*]^{\mp}\pi^{\pm}$ dominated by Z_b (10650)