

Amplitude Modulation & Phase Advancement (NO) / Retardation (IO)

Stephen Parke, Fermilab

HQL, Virginia TecH

periments

Daya Bay

Double Chooz

RENO

3

Ste

a TecH

from Daya Bay: arXiv:1505.03456

from RENO arXiv:1511.05849

from RENO arXiv:1511.05849

Stephen Parke, Fermilab

KIAS/KNRC Mini-School on Neutrino Physics

from RENO arXiv:1511.05849

Stephen Parke, Fermilab

KIAS/KNRC Mini-School on Neutrino Physics

• Daya Bay

$|\Delta m_{ee}^2| = (2.42 \pm 0.11) \times 10^{-3} \,\mathrm{eV}^2$ 4 % measurement !

Analysis of the relative antineutrino rates and energy spectra between detectors gave $\sin^2 2\theta_{13} = 0.084 \pm 0.005$ and $|\Delta m_{ee}^2| = (2.42 \pm 0.11) \times 10^{-3} \text{ eV}^2$ in the three-neutrino framework.

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$

 $\sin^2 2\theta_{13} = 0.088 \pm 0.008(\text{stat}) \pm 0.007(\text{syst}) \text{measurement}!$

• JUNO & RENO 50

expect ~0.5 % measurement !!!

• Daya Bay

$|\Delta m_{ee}^2| = (2.42 \pm 0.11) \times 10^{-3} \,\mathrm{eV}^2$ 4 % measurement !

Analysis of the relative antineutrino rates and energy spectra between detectors gave $\sin^2 2\theta_{13} = 0.084 \pm 0.005$ and $|\Delta m_{ee}^2| = (2.42 \pm 0.11) \times 10^{-3} \text{ eV}^2$ in the three-neutrino framework.

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$

 $\sin^2 2\theta_{13} = 0.088 \pm 0.008(\text{stat}) \pm 0.007(\text{syst}) \text{measurement}!$

JUNO & RENO 50 expect ~0.5 % measurement !!!

NO: $|\Delta m^2_{31}| = (1+3\%)|\Delta m^2_{32}|$ IO: $|\Delta m^2_{31}| = (1-3\%)|\Delta m^2_{32}|$

Δm^2_{ee} is, obviously, some combination of Δm^2_{31} and Δm^2_{32} !

 Δm^2_{ee} is, obviously, some combination of Δm^2_{31} and Δm^2_{32} !

But What Combination ?

 Δm_{ee}^2 is, obviously, some combination of Δm_{31}^2 and Δm_{32}^2 ! But What Combination ?

Desirable Features:

- L/E independent
- \bullet Simple relationship to Δm^2_{31} and Δm^2_{32}
- Useful for experiments at any L

In vacuum the electron neutrino disappearance is

$$\begin{aligned} \Delta_{ij} &\equiv \frac{\Delta m_{ij}^2 L}{4E} \\ P &= 1 - 4|U_{e2}|^2|U_{e1}|^2 \sin^2 \Delta_{21} \\ &- 4|U_{e3}|^2|U_{e1}|^2 \sin^2 \Delta_{31} - 4|U_{e3}|^2|U_{e2}|^2 \sin^2 \Delta_{32} \\ &= 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \qquad (< 0.01) \\ &- \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) \quad (< 0.1) \end{aligned}$$

(the mass ordering is built into the signs of Δm^2_{3i} and Δm^2_{rr})

In vacuum the electron neutrino disappearance is

$$\begin{aligned} \Delta_{ij} &\equiv \frac{\Delta m_{ij}^2 L}{4E} \\ P &= 1 - 4|U_{e2}|^2|U_{e1}|^2 \sin^2 \Delta_{21} \\ &- 4|U_{e3}|^2|U_{e1}|^2 \sin^2 \Delta_{31} - 4|U_{e3}|^2|U_{e2}|^2 \sin^2 \Delta_{32} \\ &= 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \qquad (< 0.01) \\ &- \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) \quad (< 0.1) \end{aligned}$$

(the mass ordering is built into the signs of Δm^2_{3i} and Δm^2_{rr})

• Where is the first minima ?

$$rac{L}{E} pprox rac{2\pi}{(\ \cos^2 heta_{12}\ \Delta m^2_{31} + \sin^2 heta_{12}\ \Delta m^2_{32}\)}$$

So how about ?

 $\Delta m^2_{ee} = \cos^2 heta_{12} \; \Delta m^2_{31} + \sin^2 heta_{12} \; \Delta m^2_{32}$

So how about ?

 $\Delta m^2_{ee} = \cos^2 heta_{12} \; \Delta m^2_{31} + \sin^2 heta_{12} \; \Delta m^2_{32}$

 $[\]nu_e$ average !

$P_{ee} \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{rr}$

 $\Delta m^2_{rr} = (1-r) \; \Delta m^2_{31} + r \; \Delta m^2_{32}$

춖

$P_{ee} \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{rr}$

 $\Delta m^2_{rr} = (1-r) \; \Delta m^2_{31} + r \; \Delta m^2_{32}$

Sin² $\Delta_{ee} \equiv c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{31}$ Why Does this Work this Way? With $\Delta_{ii} \equiv \frac{\delta m_{ij}^2 L}{4E}$ and s_{12}^2

Stephen Parke, Fermilab

L/E (km/MeV)

HQL, Virginia TecH

Daya Bay and RENO fit their L/E data to:

• $P_{ee} \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$

Daya Bay and RENO fit their L/E data to:

- $P_{ee} \approx 1 \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$
- using L/E independent θ_{13} and $|\Delta m_{ee}^2|$. (θ_{12} and Δm_{21}^2 obtained from other experiments.)

Daya Bay and RENO fit their L/E data to:

- $P_{ee} \approx 1 \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$
- using L/E independent θ_{13} and $|\Delta m_{ee}^2|$. (θ_{12} and Δm_{21}^2 obtained from other experiments.)
- θ_{13} and $|\Delta m_{ee}^2|$ are only weakly dependent on solar parameters and are INDEPENDENT of mass ordering.

Daya Bay and RENO fit their L/E data to:

- $P_{ee} \approx 1 \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$
- using L/E independent θ_{13} and $|\Delta m_{ee}^2|$. (θ_{12} and Δm_{21}^2 obtained from other experiments.)
- θ_{13} and $|\Delta m_{ee}^2|$ are only weakly dependent on solar parameters and are INDEPENDENT of mass ordering.
- Trivial to calculate $|\Delta m_{31}^2| = |\Delta m_{ee}^2| \pm \sin^2 \theta_{12} \Delta m_{21}^2$ and $|\Delta m_{32}^2| = |\Delta m_{ee}^2| \mp \cos^2 \theta_{12} \Delta m_{21}^2$ using mass ordering and solar parameters. But $|\Delta m_{31}^2|$ and $|\Delta m_{32}^2|$ are more dependent on solar parameters than $|\Delta m_{ee}^2|$!

Stephen Parke, Fermilab

How Does Daya Bay Define Δm^2_{EE} ?

arXiv:1310.6732

 ν_j and ν_i . Since $\Delta m_{21}^2 \ll |\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ [1], the shortdistance (~km) reactor $\overline{\nu}_e$ oscillation is due primarily to the Δ_{3i} terms and naturally leads to the definition of the effective mass-squared difference $\sin^2 \Delta_{ee} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$ [11].

1505.03456v1

[8] $\sin^2 \Delta_{ee} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$, where $\Delta_{ji} \equiv 1.267 \Delta m_{ji}^2 (\text{eV}^2) [L(\text{m})/E(\text{MeV})]$, and Δm_{ji}^2 is the difference between the mass-squares of the mass eigenstates ν_j and ν_i .

بر

$$\Rightarrow \quad \Delta m_{EE}^2 = \left(\frac{4E}{L}\right) \arcsin\left[\sqrt{(c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{32})}\right]$$

$$\Rightarrow \quad \Delta m_{EE}^2 = \left(\frac{4E}{L}\right) \arcsin\left[\sqrt{(c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{32})}\right]$$

Stephen Parke, Fermilab

Stephen Parke, Fermilab

- L/E dependent
- no simple physical meaning !
- Discontinuous at Osc. Max./Min. $(L/E \approx 0.5, 1.0, ... \text{ km/MeV})$

Why???

RHS (1) never gets exactly to 1, or back to 0 whereas LHS does !

eg $\sin^2(\frac{\pi}{2} \mp \epsilon) = 1 - \epsilon^2 + \mathcal{O}(\epsilon^4)$ with $\epsilon = s_{12}c_{12}\Delta_{21}$

After I pointing this out Daya Bay changed it's definition of Delta m^2_ee

[8] Δm_{ee}^2 is an effective mass splitting that can be obtained by replacing $\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$ with $\sin^2 \Delta_{ee}$, where $\Delta_{ji} \equiv 1.267 \Delta m_{ji}^2 (\text{eV}^2) [L(\text{ m})/E(\text{MeV})]$, and Δm_{ji}^2 is the difference between the mass-squares of the mass eigenstates ν_j and ν_i . To estimate the values of Δm_{31}^2 and Δm_{32}^2 from the measured value of Δm_{ee}^2 , See Supplemental Material at http://link.aps.org/supplemental/10.1103/ PhysRevLett.115.111802.

2

Supplemental material: Why Δm_{ee}^2 is used by Daya Bay

(The Daya Bay Collaboration) (Dated: July 27, 2015)

This note describes the advantages of reporting the Daya Bay measurement of electron antineutrino disappearance in terms of an effective mass-squared difference Δm_{ee}^2 , which is independent of the unknown ordering of neutrino masses and future improvements in our knowledge of the solar oscillation parameters.

INTRODUCTION

In the three-flavor framework, the survival probability of electron antineutrino is given by

$$P(\overline{\nu}_{e} \to \overline{\nu}_{e}) = 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21} - \sin^{2} 2\theta_{13} (\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}), \quad (1)$$

where $\Delta_x = \Delta m_x^2 \frac{L}{4E}$. The three mass-squared differences are subject to the constraint $|\Delta m_{31}^2| = |\Delta m_{32}^2| \pm |\Delta m_{21}^2|$ where "+"("-") is for the normal(inverted) mass ordering (or hierarchy). Therefore, determination of Δm_{32}^2 (or Δm_{31}^2) depends on knowledge of the mass ordering and solar oscillation parameters.

The Daya Bay experiment reports a precise measurement of the effective mass splitting Δm^2_{ee} , which is independent of our knowledge of the ordering and solar parameters. In this approach, we approximate the survival probability using

$$P(\overline{\nu}_e \to \overline{\nu}_e) \simeq 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}.$$
(2)

Despite the advantage of using Δm_{ee}^2 for the measurement, it has the disadvantage of not being a fundamental parameter. Therefore, we must determine a relation between Δm_{ee}^2 and Δm_{32}^2 given knowledge of the mass ordering and solar oscillation parameters.

In the following sections, we are going to address the following two questions:

- Is Eq. 2 good enough at the current experimental precision?
- How can we estimate the value of Δm_{32}^2 once the value of Δm_{ee}^2 is obtained?

MATHEMATICAL DERIVATION

Using the relation $|\Delta m^2_{31}|=|\Delta m^2_{32}|\pm |\Delta m^2_{21}|,$ Eq. 1 can be written as,

$$P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - 2s_{13}^2 c_{13}^2 + 2s_{13}^2 c_{13}^2 \sqrt{1 - 4s_{12}^2 c_{12}^2 \sin^2 \Delta_{21}} \cos(2\Delta_{32} \pm \phi) - 4c_{13}^4 s_{12}^2 c_{12}^2 \sin^2 \Delta_{21}, \qquad (3)$$

where $s_x = \sin \theta_x$, $c_x = \cos \theta_x$, and $\phi = \arctan\left(\frac{\sin 2\Delta_{21}}{\cos 2\Delta_{21} + \tan^2 \theta_{12}}\right)$. The last term of the above formula is the so-called "solar term" that governs the reactor antineutrino oscillation at O(100) km. For the L/E range covered by Daya Bay, $4s_{12}^2c_{12}^2\sin^2\Delta_{21} \ll 1$. Thus, Eq. 3 can be approximated as,

$$P(\overline{\nu}_e \to \overline{\nu}_e)$$

$$\simeq 1 - 4s_{13}^2 c_{13}^2 \left[\frac{1 - \cos(2\Delta_{32} \pm \phi)}{2} \right] - (solar \ term)$$

$$= 1 - \sin^2 2\theta_{13} \sin^2(\Delta_{32} \pm \phi/2) - (solar \ term). \tag{4}$$

By comparing Eq. 4 with Eq. 2, we obtain the expression relating Δm_{ee}^2 to Δm_{32}^2 (or Δm_{31}^2)

$ \Delta m^2_{ee} = \Delta m^2_{32} \pm \Delta m^2_{\phi}/2$	(5)
$= \Delta m_{31}^2 \mp (\Delta m_{21}^2 - \Delta m_{\phi}^2/2),$	(6)

where $\Delta m_{\phi}^2 = \phi \times \frac{4E}{L}$.

NUMERICAL EVALUATION

By definition, Δm_{ϕ}^2 is a function of L/E. Using the current values of $\Delta m_{21}^2 = 7.50 \times 10^{-5} \text{ eV}^2$ and $\sin^2 2\theta_{12} =$ 0.857 [1], Fig. 1 shows the value of $\Delta m_{\phi}^2/2$ as a function of energy for L = 1.6 km. We find that $\Delta m_{\phi}^2/2 \simeq 5.17 \times$ 10^{-5} eV^2 is essentially a constant in our L/E region, and numerically identical to $\cos^2\theta_{12}\Delta m_{21}^2$. Thus, this definition of Δm_{ee}^2 is similar to the definition introduced in Ref. [2]:

 $\Delta m_{\text{eff}}^2|_e = \cos^2 \theta_{12} |\Delta m_{31}^2| + \sin^2 \theta_{12} |\Delta m_{32}^2| \qquad (7)$ $= |\Delta m_{32}^2| \pm \cos^2 \theta_{12} \Delta m_{21}^2. \qquad (8)$

FIG. 1. Values of $\Delta m_{\phi}^2/2 = |\Delta m_{ee}^2 - \Delta m_{32}^2|$ (black solid line) at L = 1.6 km as a function of the neutrino energy, with $\Delta m_{21}^2 = 7.50 \times 10^{-5} \text{ eV}^2$ and $\sin^2 2\theta_{12} = 0.857$ [1]. For comparison, calculations based on other definitions of Δm_{ee}^2 , $\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$ (red dashed line) and $\Delta m_{ee}^2 = \frac{4E}{L} \arcsin \left[\sqrt{\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}} \right]$ (blue dotted line) are also shown.

Figure 2 is a comparison of the approximated formula with $\Delta m_{\phi}^2/2 = 5.17 \times 10^{-5} \text{ eV}^2$,

$$P_{ee} \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left[(\Delta m_{32}^2 + 5.17 \times 10^{-5} \text{ eV}^2) \frac{L}{4E} \right] - (solar \ term), \tag{9}$$

to the three-flavor formula, Eq. 1. In this comparison, L = 1.6 km, $\sin^2 2\theta_{13} = 0.09$, $\Delta m_{32}^2 = 2.44 \times 10^{-3} \text{ eV}^2$, and normal mass hierarchy are the inputs. The agreement between the two, better than 10^{-4} , is excellent and exceeds the achievable experimental precision.

This study demonstrates that, once we obtain the value of $|\Delta m^2_{ee}|$ using Eq. 2, we can reliably deduce the values of $|\Delta m^2_{32}|$ and $|\Delta m^2_{31}|$ using Eqs. 5 and 6 with

$$\Delta m_{\phi}^2/2 \simeq \cos^2 \theta_{12} \Delta m_{21}^2. \tag{10}$$

Using the current values of θ_{12} and Δm_{21}^2 , $\Delta m_{\phi}^2/2 \simeq 5.17 \times 10^{-5} \text{eV}^2$, and $(|\Delta m_{21}^2| - \Delta m_{\phi}^2/2) \simeq 2.33 \times 10^{-5} \text{eV}^2$.

It is important to point out that the exact solution of $\sin^2(\Delta m_{ee}^2 \frac{L}{4E}) = \cos^2 \theta_{12} \sin^2(\Delta m_{31}^2 \frac{L}{4E}) + \sin^2 \theta_{12} \sin^2(\Delta m_{32}^2 \frac{L}{4E})$ was never used to extract the value of Δm_{32}^2 or Δm_{31}^2 from the measured Δm_{ee}^2 in Daya Bay.

FIG. 2. Comparison of the survival probability at L = 1.6 km between the approximated formula with $\Delta m^2_{ee} = \Delta m^2_{32} + 5.17 \times 10^{-5} \text{ eV}^2$ and the exact three-flavor formula (Eq. 1). The oscillation parameters used in this comparison are $\sin^2 2\theta_{13} = 0.09$ and $\Delta m^2_{32} =$ $2.44 \times 10^{-3} \text{ eV}^2$ under the normal mass hierarchy assumption. The top panel shows the survival probabilities calculated with the two formulae, and the bottom panel shows the ratio of the two.

- J. Beringer *et al.* (Particle Data Group), Phys. Rev. D 86, 010001 (2012), Section 13.
- [2] H. Nunokawa, S. J. Parke, and R. Zukanovich Funchal, Phys. Rev. D 72, 013009 (2005).

Future Experiments:

JUNO

Stephen Parke, Fermilab

New DB definition: $\Delta m_{\epsilon\epsilon}^2 \equiv \frac{2E}{L} \Omega$ (1505.03456 PRL version) (Contrast: $\Delta m_{ee}^2 = \frac{\partial}{\partial L/2E} \Omega|_{L/2E \to 0}$)

Identical for L/E < 5 -10 km/MeV !

Significant ($\sim 1\%$) L/E and Mass Ordering Dependence!

expect ~0.5 % measurement !!!

Stephen Parke, Fermilab

HQL, Virginia TecH

What does **RENO** use?

(arXiv:1511.05849)

Using the $\overline{\nu}_e$ survival probability P [8], reactor experiments with a baseline distance of ~1 km can determine the mixing angle θ_{13} and an effective squared-mass-difference $\Delta m_{ee}^2 \equiv \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$ [9].

$$1 - P = \sin^{2} 2\theta_{13} (\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}) + \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21} \approx \sin^{2} 2\theta_{13} \sin^{2} \Delta_{ee} + \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}, (1)$$

Double Chooz ?

Neutrino Propogation in Matter

if one choses to write the Hamiltonian using Δm^2_{ee} and Δm^2_{21} then the Hamiltonian is simpler than with any other choice !

See Hisakazu Minakata and SP arXiv:1505.01826

$\tilde{H}(x) = \frac{\Delta m_{31}^2}{2E} \left\{ \begin{bmatrix} \frac{a(x)}{\Delta m_{31}^2} + s_{13}^2 & 0 & c_{13}s_{13} \\ 0 & 0 & 0 \\ c_{13}s_{13} & 0 & c_{13}^2 \end{bmatrix} + \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \begin{bmatrix} s_{12}^2 c_{13}^2 & c_{12}s_{12}c_{13} & -s_{12}^2 c_{13}s_{13} \\ c_{12}s_{12}c_{13} & c_{12}^2 & -c_{12}s_{12}s_{13} \\ -s_{12}^2 c_{13}s_{13} & -c_{12}s_{12}s_{13} & s_{12}^2 s_{13}^2 \end{bmatrix} \right\}$

new

$$\tilde{H} = \frac{1}{2E} \begin{pmatrix} \lambda_a & s_{13}c_{13}\Delta m_{ee}^2 \\ \lambda_b & \\ s_{13}c_{13}\Delta m_{ee}^2 & \lambda_c \end{pmatrix} + \epsilon s_{12}c_{12}\frac{\Delta m_{ee}^2}{2E} \begin{pmatrix} c_{13} \\ c_{13} & -s_{13} \\ -s_{13} \end{pmatrix} \qquad \begin{array}{l} \lambda_a = a + (s_{13}^2 + \epsilon s_{12}^2)\Delta m_{ee}^2 \\ \lambda_b = \epsilon c_{12}^2 \Delta m_{ee}^2 \\ \lambda_c = (c_{13}^2 + \epsilon s_{12}^2)\Delta m_{ee}^2 \\ \lambda_c = (c_{13}^2 + \epsilon s_{12}^2)\Delta m_{ee}^2 \\ \end{array}$$

Stephen Parke, Fermilab

• Is a simple combination of fundamental parameters and is independent of L/E for all values of L/E.

- Is a simple combination of fundamental parameters and is independent of L/E for all values of L/E.
- Has a direct, simple, physical interpretation: Δm_{ee}^2 is "the ν_e weighted average of Δm_{31}^2 and Δm_{32}^2 ," since the ratio of the ν_e fraction in $\nu_1 : \nu_2$ is $c_{12}^2 : s_{12}^2$.

- Is a simple combination of fundamental parameters and is independent of L/E for all values of L/E.
- Has a direct, simple, physical interpretation: Δm_{ee}^2 is "the ν_e weighted average of Δm_{31}^2 and Δm_{32}^2 ," since the ratio of the ν_e fraction in $\nu_1 : \nu_2$ is $c_{12}^2 : s_{12}^2$.
- Can be used in short baseline reactor experiments, L/E < 1 km/MeV, using the approximate oscillation probability,

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - 4c_{13}^4 s_{12}^2 c_{12}^2 \sin^2 \Delta_{21} - 4s_{13}^2 c_{13}^2 \sin^2 \Delta_{ee},$$

which is accurate to better than one part in 10^4 .

- Is a simple combination of fundamental parameters and is independent of L/E for all values of L/E.
- Has a direct, simple, physical interpretation: Δm_{ee}^2 is "the ν_e weighted average of Δm_{31}^2 and Δm_{32}^2 ," since the ratio of the ν_e fraction in $\nu_1 : \nu_2$ is $c_{12}^2 : s_{12}^2$.
- Can be used in short baseline reactor experiments, L/E < 1 km/MeV, using the approximate oscillation probability,

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - 4c_{13}^4 s_{12}^2 c_{12}^2 \sin^2 \Delta_{21} - 4s_{13}^2 c_{13}^2 \sin^2 \Delta_{ee},$$

which is accurate to better than one part in 10^4 .

• Can be used in medium baseline reactor experiments, $L\approx 50$ km, and determines the Δm^2 of the fundamental oscillation. The advancement or retardation of the phase of this fundamental oscillation determines the neutrino mass ordering.

Stephen Parke, Fermilab

HQL, Virginia TecH

What is Δm_{ee}^2 ?

SP arXiv:1601.07464

- the u_e weighted average Δm^2_{31} and Δm^2_{32}
- $\Delta m_{ee}^2 \equiv \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$
 - Useful at any L/E, and especially at < 0.8 km/MeV (Daya Bay, RENO, DC) 6 - 25 km/MeV (JUNO, RENO-50)

backup

Stephen Parke, Fermilab

 $P_{ee} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $- \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$

$$= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$$
$$- \frac{1}{2} \sin^{2} 2\theta_{13} \left(1 - \sqrt{(1 - \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21})} \cdot \cos \Omega \right)$$

where $\Omega = 2|\Delta_{ee}| \pm \phi$ (+/- mass ordering) with $\phi = \{\arctan(\cos 2\theta_{12} \tan \Delta_{21}) - \Delta_{21} \cos 2\theta_{12}\}$

H. Minakata, H. Nunokawa, S. J. Parke and R. Zukanovich Funchal, Phys. Rev. D **74**, 053008 (2006) [hep-ph/0607284].

Stephen Parke, Fermilab

HQL, Virginia TecH

 $P_{ee} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $- \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$

$$= 1 - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$$
$$- \frac{1}{2} \sin^{2} 2\theta_{13} \left(1 - \sqrt{(1 - \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21})} \cdot \cos \Omega \right)$$

(+/- mass ordering)

where $\Omega = 2|\Delta_{ee}| \pm \phi$ (+/- m with $\phi = \{\arctan(\cos 2\theta_{12} \tan \Delta_{21}) - \Delta_{21} \cos 2\theta_{12}\}$ Note:

- Separation $2\Delta_{ee}$ and ϕ is unique !
- $2\Delta_{ee}$ is linear in L/E and depends on an atm Δm^2 .
- $\phi = \{\arctan(\cos 2\theta_{12} \tan \Delta_{21}) \Delta_{21} \cos 2\theta_{12}\}\$ starts at $\Delta_{21}^3 \sim (L/E)^3$ and depends on only solar parameters, staircase function.

H. Minakata, H. Nunokawa, S. J. Parke and R. Zukanovich Funchal, Phys. Rev. D 74, 053008 (2006) [hep-ph/0607284].

Stephen Parke, Fermilab

HQL, Virginia TecH

An overview of the Daya Bay Reactor Neutrino

Experiment

Jun Cao^a, Kam-Biu Luk^b

Co-spokepersons of Daya Bay

^aInstitute of High Energy Physics, Beijing, China ^bDepartment of Physics, University of California and Lawrence Berkeley National Laboratory, Berkeley, California, USA

distance $(\mathcal{O}(km))$ from the reactors. In the three-neutrino framework, the survival probability is given by

$$P = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} , \qquad (2)$$

where $\sin^2 \Delta_{ee} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$ and $\Delta_{ji} \equiv 1.267 \Delta m_{ji}^2 L/E$. Δm_{ji}^2 is the mass-squared unterence in eV, E is the energy of the $\overline{\nu}_e$ in MeV, and L is the distance in meters from the production point.

mass splitting are reviewed. Current precision on $\sin^2 2\theta_{13}$ and $|\Delta m_{ee}^2|$ are 6% and 4.5%, respectively. The projected precisions are shown in Fig. 5. The Daya Bay experiment is expected to operate until 2020; by then, the precision is ~ 3% for both $\sin^2 2\theta_{13}$ and $|\Delta m_{ee}^2|$. Daya Bay has also obtained