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Neutrino Oscillations
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Kajita (SK), McDonald (SNO): 2015 Nobel Prize

Up/Down Asymmetry

Electron neutrinos close to 

expectation

Deficit of upward muon neutrinos

Shaded Region: Model prediction 

PRL 81 (1998) 1562-1567.

PRL 89 (2002) 011301. 

Super-Kamiokande

Atmospheric Neutrinos

SNO

Solar Neutrinos

𝜈𝜇 and 𝜈𝜏 coming from the sun



Neutrino Oscillations
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Flavor states

Mass states

PMNS Matrix (Unitary mixing matrix)

𝑃 𝜈𝜇 → 𝜈𝜇 ∼ 1 − sin22𝜃23sin
2
𝐿Δ𝑚32

2

4𝐸

Survival probability (simplified two neutrino case)

𝑐𝑎𝑏 = cos𝜃𝑎𝑏
𝑠𝑎𝑏 = sin𝜃𝑎𝑏

Three neutrino oscillations: 6 total parameters

Three neutrinos Flavor and 

mass states not 

the same

Δ𝑚32
2 = 𝑚3

2 −𝑚2
2



Neutrino Oscillation Parameters
Parameter Value Experiment Types

Δm2
12

(7.54±0.24) x 10-5 eV2 Solar, Reactor

|Δm2
23

| (2.43±0.06) x 10-3 eV2 Atmospheric, Beam

sin2 θ
12

0.308±0.017 Solar, Reactor

sin2 θ
23

0.437±0.030 Atmospheric, Beam

sin2 θ
13

0.0234±0.0020 Reactor, Beam

δ
CP

Unknown

Mass Hierarchy Unknown

 δCP: CP Violation (matter/antimatter asymmetry)

 Hierarchy: +|Δ𝑚23
2 | or − |Δ𝑚23

2 | (Determines 

ordering of mass states)
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The T2K Experiment
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J-PARC

Tokai

Tokyo

Kamioka

Mine

Off-axis beam from J-PARC to Kamioka

295-km baseline

600-MeV peak neutrino energy
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T2K Neutrino Beam
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ν
μ

(to detector)

μ+

(to beam dump)

96 m decay tunnel3 Focusing Horns

30 GeV protons

Graphite target

Primary beamline Target & 1st Horn

Decay tunnel



Precision measurements of 
oscillations:
 𝜈𝜇 disappearance

 𝜈𝑒 appearance

 First evidence for non-zero 𝜃13!
  𝜈𝜇 disappearance

  𝜈𝑒 appearance

Near detector physics
 Cross sections

 Short-baseline oscillations

 Lorentz violation

 More

Physics Goals
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2.5° off-axis beam tunes energy to 

oscillation maximum

𝑃(𝜈𝜇 → 𝜈𝜇)

𝑃(𝜈𝜇 → 𝜈𝑒)



Far Detector: Super-Kamiokande
 50-kton mass water 

Cherenkov detector
 Measures oscillated 

𝜈𝜇 beam
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Disappeareance: 𝜈𝜇 + 𝐴 → 𝜇− + 𝑋

Appearance: 𝜈𝑒 + 𝐴 → 𝑒− + 𝑋

Simulated 𝜈𝜇 event Simulated 𝜈𝑒 event
SK Flux Prediction



T2K Charged-Current Interactions

Quasielastic

(CCQE)
Coherent Pion Prod.

Resonant Pion Prod. Deep Inelastic Scattering

• Few existing measurements on water

• CCQE (i.e. no pions) is main signal channel

Neutrino

Antineutrino
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Near Detectors
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Beam direction

Alternating scintillator & iron layers

Measure on-axis beam

Monitor beam profile

Magnetized tracking detector

Measure off-axis beam

Constrain SK flux/interaction model

Magnet + TPCs: Charge/Momentum reconstruction

FGD1: Scintillator target

FGD2: Scintillator & water target

P0D: Upstream scintillator & water targets

ECALs: Scintillator & lead

INGRID ND280



T2K Oscillation Analysis
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SK Selections:

1) 𝜈𝜇 CC0π (CCQE-like) - Disappearance

2) 𝜈𝑒 CC0π - Appearance

ND280 Data

ND280 Fit

Oscillation 

FitINGRID, 

NA61 Data

SK Data

Oscillation 

Parameters

Constrain flux, 

interactions 

models

Extract oscillation 

parameters, 

marginalize over 

systematics



Near Detector Constraints
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Select ND280 events by 

reconstructed topology
Fit cross section, flux, detector model 

to selected data samples

Apply fit (constrained) model to improve 

predicted SK spectra

Example here:

𝜈 beam,

𝜈𝜇 CC0π (CCQE-like) sample 

(p,cosθ) distribution

Other samples include:

𝜈𝜇 CC1π (CC-Res-like) sample

𝜈𝜇 CC-Other sample

Reduce systematic uncertainties 

from ~25% to ~8%

Before

After



Neutrino Results
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Muon Neutrinos

Electron Neutrinos

Early 2015 

joint 𝜈𝜇, 𝜈𝑒
oscillation fit

Most precise 

measurement 

so far

Phys. Rev. D 

91, 072010 (2015)



Neutrino Results
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Muon Neutrinos

Electron Neutrinos

Early 2015 

joint 𝜈𝜇, 𝜈𝑒
oscillation fit

Most precise 

measurement 

so far

Phys. Rev. D 91, 072010 (2015)

T2K+Reactor Fit



CP Violation

𝑃 𝜈𝜇 → 𝜈𝑒 = sin2𝜃23sin
22𝜃13sin

2
𝐿Δ𝑚32

2

4𝐸
1 +

2𝑎

Δ𝑚31
2 sin2𝜃13

−sin2𝜃12sin2𝜃23sin2𝜃13cos𝜃13𝐬𝐢𝐧𝜹𝑪𝑷sin
2
𝐿Δ𝑚32

2

4𝐸
sin

𝐿Δ𝑚21
2

4𝐸

Ignoring matter effect:

𝑃 𝜈𝜇 → 𝜈𝑒 − 𝑃  𝜈𝜇 →  𝜈𝑒 ∝ sin𝛿𝐶𝑃

To measure CP violation, must compare 𝜈 and  𝜈 oscillations
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Matter effect



Antineutrino Oscillations
 Running mostly in antineutrino mode since 2014
 First results released in 2015
 First publication in May 2016
 Current analysis uses:

 0.43 x 1020 POT ND280  𝜈 data

 5.82 x 1020 POT ND280 𝜈 data

 4.01 x 1020 POT SK data
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 𝜈𝜇 Disappearance
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SK  𝜈𝜇 Sample

Oscillation Parameters Fit

Clear deficit of  𝜈𝜇 compared 

to no oscillations

 Most precise measurement 

so far

  𝜈𝜇 consistent with 𝜈𝜇
parameters PRL, 116, 181801 (2016)



 𝜈𝑒 Appearance

 3 candidate  𝜈𝑒
appearance events

 Low statistics, still 
consistent with 
expected background

 Need more data
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Compared to this result:

Have >10x ND280 data used

Have ~2x SK data

Preliminary



Cross Section Measurements
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Neutrino-nucleus interactions are complicated

Test & constrain neutrino interaction models

Reduce uncertainties in oscillation measurements

ND280 and INGRID Cross Sections:
 Interactions on several materials (scintillator, water, iron, etc)

 Interactions with different final state topologies

𝜎 ∼
𝑁 − 𝐵

𝜀Φ𝑁𝑡𝑎𝑟𝑔𝑒𝑡𝑠

Data Expected Background

Flux
Efficiency

Flux-averaged 

Cross Section



Charged-Current with 0 𝜋 on 
Scintillator

Method 1:
 Select muon using dE/dx
 0 or 1 protons found (defined by 

dE/dx) with no other tracks
 Perform binned likelihood fit

Method 2:
 Select muon using dE/dx
 Look for events with 0 pion 

candidate tracks
 Extract cross section using 

Bayesian unfolding
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Cross section for several muon angle bins

Red solid: Martini et al. prediction

Red dashed: Nieves et al. prediction

Systematics dominated by flux uncertainty 

(8.5%)arXiv:1602.03652



Future Outlook and Conclusions
 T2K uses an off-axis neutrino beam to study 

long-baseline neutrino oscillations
 Already producing leading antineutrino 

measurements with first  𝜈 results, new result 
with ~2x data later this year

 Many neutrino interactions results being 
released too

 Continuing to take data to improve existing 
results

 Many new results to come (water cross 
sections, antineutrino interactions, …) 
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Thank You
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Backups
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T2K Oscillation Analysis
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Flux Model

Cross Section 

Model

ND280 

Model

Oscillation FitND280 Fit

SK Model

External cross 

sections

NA61 data

INGRID/Beam 

monitors

ND280 Data

SK Data

T2K Physics 

Model

External 

Data

T2K Data



𝜈𝑒 CC interactions in matter add an additional potential energy:

𝐻

𝜈𝑒
𝜈𝜇
𝜈𝜏

→
1

2𝐸
𝑈

𝑚1
2 0 0

0 𝑚2
2 0

0 0 𝑚3
2

𝑈†

𝜈𝑒
𝜈𝜇
𝜈𝜏

+
2𝐺𝐹𝑛𝑒 0 0
0 0 0
0 0 0

𝜈𝑒
𝜈𝜇
𝜈𝜏

MSW (Matter) Effect
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ν

e

e

ν

Electrons in matter

Extra mass term:

Changes mixing angles

Changes effective mass splitting



More on Interactions

 Interactions in target nuclei are important

 Need to understand SK event topologies rather than 

fundamental interaction types

CCQE

Simplest interaction
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p

Multinucleon effects

2p2h

Others include: 

CC Res. w/ pion absorption in nucleus, …

CC0π Topology

Measured – True nu Energy

CCQE Assumptions

True CCQE

2p2h

0

Other topologies will affect event 

reconstruction
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Antineutrino ND280 Samples
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  𝜈𝜇 CC 1 track sample

 Mostly contains CCQE

 Simpler sample definition than in 𝜈𝜇
analysis

 𝜈𝜇 CC 1 track

 Intrinsic wrong sign background (nu in 

antinu beam) much larger in antinu

beam



Charged-Current with 1 𝜋+ on 
Scintillator
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Binned by muon momentum

Preliminary
Binned by pion momentum

Preliminary

 Select muon from TPC dE/dx

 Select pion from dE/dx and/or muon decay tagging

 Veto 𝜋0 using calorimeters

 Using iterative Bayesian unfolding to extract result

 Muon distributions show good agreement

 Discrepancy between NEUT MC and measured pion 

distributions



Charged-Current Coherent Pion 
Production on Scintillator

 First measurement at 
energy below 1.5 
GeV

 Select muon by 
dE/dx

 Select pion candidate 
with MIP dE/dx

 Low vertex activity
 Large uncertainties 

from background & 
vertex activity models
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Coherent production:

Nucleus stays in ground state

Little momentum is transferred

Preliminary

arXiv:1604.04406


