

Recent Results from the T2K

Experiment

Jeremy P. Lopez For the T2K Collaboration

HQL 2016 23 May 2016

Tzk Neutrino Oscillations

Kajita (SK), McDonald (SNO): 2015 Nobel Prize

Neutrino Oscillations

Three neutrinos
Flavor states
$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
Flavor and mass states not the same Mass states not the same Mass states not the same Mass states
PMNS Matrix (Unitary mixing matrix)
$$C_{ab} = \cos\theta_{ab}$$

$$S_{ab} = \sin\theta_{ab}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Survival probability (simplified two neutrino case)
$$P(\nu_\mu \rightarrow \nu_\mu) \sim 1 - \sin^2 2\theta_{23} \sin^2 \frac{L\Delta m_{32}^2}{4E}$$
Three neutrino oscillations: 6 total parameters

Neutrino Oscillation Parameters

Parameter	Value	Experiment Types	
Δm_{12}^2	(7.54±0.24) x 10 ⁻⁵ eV ²	Solar, Reactor	
Δm ² ₂₃	(2.43±0.06) x 10 ⁻³ eV ²	Atmospheric, Beam	
$\sin^2 \theta_{12}$	0.308±0.017	Solar, Reactor	
$\sin^2 \theta_{23}$	0.437±0.030	Atmospheric, Beam	
sin²θ ₁₃	0.0234±0.0020	Reactor, Beam	
δ _{CP}	Unknown		
Mass Hierarchy	Unknown		

δ_{CP}: CP Violation (matter/antimatter asymmetry)
 Hierarchy: +|Δm²₂₃| or - |Δm²₂₃| (Determines ordering of mass states)

The T2K Experiment

Off-axis beam from J-PARC to Kamioka 295-km baseline 600-MeV peak neutrino energy

Decay tunnel

5/23/2016

TZ/K Physics Goals

Precision measurements of oscillations:

- v_{μ} disappearance
- *v_e* appearance
 - First evidence for non-zero $\theta_{13}!$
- $\bar{\nu}_{\mu}$ disappearance
- \bar{v}_e appearance

Near detector physics

- Cross sections
- Short-baseline oscillations
- Lorentz violation
- More

oscillation maximum

Tzk Far Detector: Super-Kamiokande

- 50-kton mass water Cherenkov detector
- Measures oscillated v_{μ} beam

Disappeareance: $\nu_{\mu} + A \rightarrow \mu^{-} + X$ Appearance: $\nu_{e} + A \rightarrow e^{-} + X$

5/23/2016

T2K Charged-Current Interactions

TZ/K Near Detectors

T2K Oscillation Analysis

SK Selections:

- 1) v_{μ} CC0 π (CCQE-like) Disappearance
- 2) $v_e CC0\pi$ Appearance

5/23/2016

TZK CP Violation

Matter effect

1

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\frac{L\Delta m_{32}^{2}}{4E}\left(1 + \frac{2a}{\Delta m_{31}^{2}}\sin^{2}\theta_{13}\right)$$
$$-\sin^{2}\theta_{12}\sin^{2}\theta_{23}\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\delta_{CP}\sin^{2}\frac{L\Delta m_{32}^{2}}{4E}\sin\frac{L\Delta m_{21}^{2}}{4E}$$

Ignoring matter effect:

$$P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \propto \sin \delta_{CP}$$

To measure CP violation, must compare v and \bar{v} oscillations

Antineutrino Oscillations

- Running mostly in antineutrino mode since 2014
- First results released in 2015
- First publication in May 2016
- Current analysis uses:
- 5.82 x 10²⁰ POT ND280 ν data
- 4.01 x 10²⁰ POT SK data

SK $\bar{\nu}_{\mu}$ Sample

- Most precise measurement so far
- $\bar{\nu}_{\mu}$ consistent with ν_{μ} parameters

PRL, 116, 181801 (2016)

5/23/2016

	$\delta_{CP} = -\pi/2$	$\delta_{CP}=0$	$\delta_{CP} = +\pi/2$
Sig $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	1.961	2.636	3.288
Bkg $\nu_{\mu} ightarrow \nu_{e}$	0.592	0.505	0.389
Bkg NC	0.349	0.349	0.349
Bkg other	0.826	0.826	0.826
Total	3.729	4.315	4.851

- 3 candidate \bar{v}_e appearance events
- Low statistics, still consistent with expected background
- Need more data

Compared to this result: Have >10x ND280 data used Have ~2x SK data

Cross Section Measurements

- Neutrino-nucleus interactions are complicated
- Test & constrain neutrino interaction models
- Reduce uncertainties in oscillation measurements
- ND280 and INGRID Cross Sections:
 - Interactions on several materials (scintillator, water, iron, etc)
 - Interactions with different final state topologies

Charged-Current with 0 π on Scintillator

Method 1:

- Select muon using dE/dx
- 0 or 1 protons found (defined by dE/dx) with no other tracks
- Perform binned likelihood fit

Method 2:

- Select muon using dE/dx
- Look for events with 0 pion candidate tracks
- Extract cross section using Bayesian unfolding v_l

 $0.70 < true \cos\theta_{\rm u} < 0.80$

Cross section for several muon angle bins
 Red solid: Martini et al. prediction
 Red dashed: Nieves et al. prediction

Systematics dominated by flux uncertainty (8.5%)

arXiv:1602.03652

- T2K uses an off-axis neutrino beam to study long-baseline neutrino oscillations
- Already producing leading antineutrino measurements with first v
 results, new result with ~2x data later this year
- Many neutrino interactions results being released too
- Continuing to take data to improve existing results
- Many new results to come (water cross sections, antineutrino interactions, ...)

Thank You

Backups

 v_e CC interactions in matter add an additional potential energy:

$$H\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} \to \frac{1}{2E}U\begin{pmatrix}m_{1}^{2} & 0 & 0\\0 & m_{2}^{2} & 0\\0 & 0 & m_{3}^{2}\end{pmatrix}U^{\dagger}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} + \begin{pmatrix}\sqrt{2}G_{F}n_{e} & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{pmatrix}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix}$$

Extra mass term: Changes mixing angles Changes effective mass splitting

More on Interactions

- Interactions in target nuclei are important
- Need to understand SK event topologies rather than fundamental interaction types

- v_{μ} CC 1 track
- Intrinsic wrong sign background (nu in antinu beam) much larger in antinu beam

Charged-Current with 1 π^+ on Scintillator

- Select muon from TPC dE/dx
- Select pion from dE/dx and/or muon decay tagging
- Veto π^0 using calorimeters
- Using iterative Bayesian unfolding to extract result
- Muon distributions show good agreement
- Discrepancy between NEUT MC and measured pion distributions

Charged-Current Coherent Pion Production on Scintillator

- First measurement at energy below 1.5 GeV
- Select muon by dE/dx
- Select pion candidate with MIP dE/dx
- Low vertex activity
- Large uncertainties from background & vertex activity models

