First Neutrino Oscillations Results from NOvA

Heavy Quarks and Leptons 2016

Kanika Sachdev

‡Fermilab

May 23, 2016

The NOvA Experiment

🛟 Fermilab

- NOvA (NuMI Off-axis ν_e Appearance) is a neutrino oscillation experiment
 - * Baseline of 810 km
 - * NuMI, beam of mostly u_{μ}
 - * Two functionally identical detectors

The NOvA Experiment

- NOvA (NuMI Off-axis ve Appearance) is a neutrino oscillation experiment
 - Baseline of 810 km
 - * NuMI, beam of mostly u_{μ}
 - * Two functionally identical detectors
 - * 14 mrad off-axis from the beam

The NOvA Experiment

🛟 Fermilab

- NOvA (NuMI Off-axis ve Appearance) is a neutrino oscillation experiment
 - Baseline of 810 km
 - * NuMI, beam of mostly u_{μ}
 - * Two functionally identical detectors
 - * 14 mrad off-axis from the beam
- Measure standard oscillations in channels:
 - * $\nu_{\mu}(\bar{\nu}_{\mu})$ to $\nu_{\rm e}(\bar{\nu}_{\rm e})$ (appearance)
 - $* \
 u_{\mu}(ar{
 u}_{\mu})$ to $u_{\mu}(ar{
 u}_{\mu})$ (disappearance)
- First data from February 2014 to May 2015, with 2.74 ×10²⁰ of full-detector equivalent POT, 7.6% of exposure planned for full life of NOvA

- * NuMI beam can run in neutrino as well as anti-neutrino
- * To first order, NOvA measures $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$ oscillation probabilities at 2 GeV

$$P({}^{(-)}_{\nu \mu} \rightarrow {}^{(-)}_{\nu e}) = P_1 + P_2 + P_3 + P_4$$

$$\begin{aligned} P_{1} &= \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E} \\ P_{2} &= \sin^{2} 2\theta_{13} \cos^{2} \theta_{23} \sin^{2} \frac{\Delta m_{21}^{2} L}{4E} \\ P_{3} &= \begin{pmatrix} + \\ - \end{pmatrix} \frac{\Delta m_{31}}{\delta} \sin \frac{\Delta m_{22}^{2} L}{4E} \\ P_{4} &= J \cos \delta \cos \frac{\Delta m_{32}^{2} L}{4E} \\ J &= \cos \theta_{31} \sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{21} \sin \frac{\Delta m_{22}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} \end{aligned}$$

1 and 2 σ Contours for Starred Point

NOvA Detectors

* Tracking calorimeters

Far Detector (FD)

- * 14 kt, ≥ 344,000 channels
- * On surface
- * 810 km from source

Near Detector (ND)

- * 0.3 kt, ≥ 20,000 channels
- * 100 m below surface
- * 1 km from the NuMI

NOvA Detector Design

* Composed of PVC modules extruded to form long tube-like

cells : 15 m long in FD, 4 m ND

- * Each cell is filled with liquid scintillator
- Optical fiber loop carries scintillation light to a pixel on an Avalanche Photo Diode (APD)
- Cells arranged in planes, with alternating planes perpendicular in orientation

Fermilab

Far Detector

🛟 Fermilab

Far Detector Data

Far Detector Data

Far Detector Data

Neutrino Events In NOvA

* Low-Z material, each plane samples ~ 0.18 radiation-lengths

Molière radius is ~ 10 cm, 2.5 NOvA cells *

NOvA Monte Carlo

辈 Fermilab

Oscillations with Two Detectors

- Use Near Detector data to constrain the signal and backgrounds expected in the Far Detector
- Systematic errors, like flux, interaction cross-section, detector modeling etc cancel to a large extent in extrapolation

辈 Fermilab

u_{μ} Disappearance Analysis

Selection of ν_{μ} CC

🛟 Fermilab

Combine input variables in a k-Nearest Neighbor algorithm ν_{μ} selection purity of > 95%

Rejection factor of $\mathbf{10}^7$ achieved with event topology

Expect 1.4 cosmic background events on an expected oscillated signal count of 30-35 signal events!

Final background measured directly form beam-off FD data

Cosmic rejection BDT based on muon direction, position, length, number of hits in slice and energy

Systematics

🛟 Fermilab

- Most systematics are negligible in F/N ratio
- ND data exhibits smaller hadronic energy than simulation, though muons agree well
- Calibrate hadronic energy response in simulation to data
- * Assign a 14% uncertainty on E_{had} scale $\implies \sim 5\%$ error on E_{ν}
- Other systematics evaluated: neutrino flux, neutrino interaction models, absolute and relative calibration, oscillation parameter uncertainty

Far Detector ν_{μ} Candidates

- Expected 201 events in the absence of oscillations (with 2 beam neutrino background and 1.4 cosmics)
- * Observed 33 events
- * Clear observation of ν_{μ} disappearance!

🛟 Fermilab

- * Normal Hierarchy
 - * $\Delta m^2_{32} = (2.52^{+0.20}_{-0.18}) \times 10^{-3}$ eV²
 - sin² θ₂₃ in the 68% CL range
 [0.38, 0.65]. Best fits 0.43 and 0.60
- * Inverted Hierarchy

* $\Delta m_{32}^2 =$

 $(-2.56\pm0.19)\times10^{-3}~\text{eV}^2$

- sin² θ₂₃ in the 68% CL range
 [0.37, 0.64]. Best fits 0.44 and 0.59
- Recently published: Phys. Rev.
 D 93, 051104(R)

$\nu_{\rm e}$ Appearance Analysis

- * Likelihood-based ν_{e} identification (LID)
- * Checks if leading shower is electron-like
- * Uses energy deposited per path-length (dE/dx) in a plane to identify particles
- * dE/dx measured in longitudinal and transverse directions

辈 Fermilab

Spatial pattern of energy deposition matched against library of **10**⁸ simulated events Properties of best-matches are input to a decision tree

‡ Fermilab

Spatial pattern of energy deposition matched against library of **10**⁸ simulated events Properties of best-matches are input to a decision tree

LID and LEM have nearly identical performance.

Signal efficiency wrt preselection is 35%, with 62% overlap in signal between the two IDs Primary PID: the more traditional LID

辈 Fermilab

Performance

🛟 Fermilab

* LID and neutrino energy distributions in ND data and simulation

7% excess in ν_e selected ND data, extrapolated to FD background prediction

Simple cuts reject downward directed events and those too close to detector edges

Rejection achieved at 1 part in **10⁸** Expected cosmic background is **0.06** event!

	Signal	Syst	Bg	Syst	Tot Events
IH, $\delta=\pi/2$, $ heta_{23}=\pi/4$	2.48	0.41	1.01	0.11	3.49
NH, $\delta=3\pi/2$, $ heta_{23}=\pi/4$	6.25	1.01	0.99	0.11	7.24

Cut and count analysis PID cut optimized to maximize s/\sqrt{b}

و م م NO_VA $|\Delta m_{32}^2| = 2.32 \ 10^{-3} \ eV^2$ 0.08 sin²(20,) = 0.095 $\sin^2(2\theta_{23}) = 1.00$ 0.07 0.06 0.05 $\Delta m^2 < 0$ is 0.04 0.03 ∆m² $\circ \delta = 0$ 0.02 δ = π/2 $\Box \delta = \pi$ 0.01 $\delta = 3\pi/2$ 0 0.02 0.04 0.06 0.08 n P(v_)

 $P(\bar{v}_{e})$ vs. $P(v_{e})$ for sin²(2 θ_{23}) = 1

Result

- $\ensuremath{\ast}$ Observation in FD
 - * LID: 6 $\nu_{\rm e}$ candidates, significance of $\nu_{\rm e}$ appearance: 3.3 σ
 - $\ast~$ LEM: 11 $\nu_{\rm e}$ candidates, significance of $\nu_{\rm e}$ appearance: 5.3 σ
- * None appear to be obvious cosmic rays or neutrino background
- * 7.8% probability of observing a less likely LID-LEM overlap

ν_e Signal Events

🛟 Fermilab

ν_e Signal Events

🛟 Fermilab

ν_e Signal Events

🛟 Fermilab

Kanika Sachdev

θ_{13} vs CP Violation

Fermilab

θ_{13} vs CP Violation

- * Feldman-Cousins procedure
- * Solar oscillation parameters varied
- * $\Delta m^2_{
 m 32}$ varied according to NOvA u_μ disappearance result
- * $\sin^2 \theta_{23} = 0.5$

θ_{13} vs CP Violation

- * Feldman-Cousins procedure
- * Solar oscillation parameters varied
- * Δm_{32}^2 varied according to NOvA ν_{μ} disappearance result
- * $\sin^2 \theta_{23} = 0.5$
- LEM observation has some tension with reactor results

Sensitivity to CP

- * Additional reactor constraint of $\sin^2 2\theta_{13} = 0.086$
- * Inverted hierarchy is disfavoured at 90% CL in the range $0.1\pi < \delta_{CP} < 0.5\pi$
- * With secondary selector, LEM, all values of δ_{CP} are disfavoured at 90% for inverted hierarchy
- * Paper published in PRL (Phys. Rev. Lett. 116, 151806)

Kanika Sachdev

🛟 Fermilab

Conclusions

🛟 Fermilab

- * First oscillation results from NOvA with 8% planned exposure already competitive
- * ν_{μ} disappearance results consistent with MINOS and T2K
- * ν_e appearance result consistent with reactor neutrinos, disfavours $0.1\pi < \delta_{CP} < 0.5\pi$ for Inverted Hierarchy at 90% CL
- * Later this year: new oscillation results with more than 2x the data
- * Plus: new analysis techniques being developed
- * Disappearance result with reduced systematics
- * Sterile neutrino, many x-sec and other exotic physics analyses in progress too!

* Thank you!

Back Up

NOvA Sensitivity to Mass Hierarchy

Kanika Sachdev

1 and 2 σ Contours for Starred Point

Normal Hierarchy Inverted Hierarchy

🛟 Fermilab

NOvA Sensitivity to CP Violation

- * CP violation phase determination at
 - > 1.5 σ in the best case

Normal Hierarchy Inverted Hierarchy

Kanika Sachdev

辈 Fermilab

NOvA Sensitivity to θ_{23} Octant

NOvA octant determination, 3+3 vr $\sin^2 2\theta_{13} = 0.095, \ \sin^2 2\theta_{23} = 0.95, \ \theta_{23} > \pi/4$ significance of octant determination (σ) $\Delta m^2 < 0$ 3.5 $\Delta m^2 > 0$ з 2.5 5 0.5 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 1 δίπ

* θ_{23} octant determination at $\sim 3\sigma$

1 and 2 o Contours for Starred Point

‡ Fermilab

🛟 Fermilab

* EM shower validation in FD

* Isolate brem-showers in cosmic-ray muons by muon-removal

🛟 Fermilab

* Reconstructed neutrino energy in FD

u_{μ} Energy Reconstruction

- * Muon energy reconstructed from range
- * Hadronic system: $\sum_{cell} E_{visible} \implies E_{had}$
- * Neutrino energy is the sum of the two
- $\ast~$ Energy resolution \sim 7% at beam peak

‡Fermilab

u_{μ} Energy Reconstruction

- * Muon energy reconstructed from range
- * Hadronic system: $\sum_{cell} E_{visible} \implies E_{had}$
- * Neutrino energy is the sum of the two
- $\ast~$ Energy resolution \sim 7% at beam peak

* Data and simulation agree well for LID and LEM selected events in the ND

* See a 7% excess in ND data over MC

‡ Fermilab

Extrapolation can work..

LID selected backgrounds are similar in ND and FD

Fermilab

ν_e Systematics

