

The LHCb Upgrade and beyond

Tomasz Szumlak

on behalf of the LHCb Collaboration

AGH-University of Science and Technology

XIII International Conference on Heavy Quarks and Leptons (HQL)

22/05 – 27/05/2016, Virginia Tech Blacksburg, USA

Outline

- □ LHCb Detector @ RUNI and RUN II
- Upgrade Plans
- □ Theatre of Dreams going beyon RUN III
- **G** Summary

Introduction – LHCb detector

- □ LHCb is dedicated for studying heavy quark flavour physics
- **\Box** It is a single arm forward spectrometer (2 < η < 5)
- □ Excellent tracking capabilities provided by:
 - □ Vertex detector **VELO**
 - Upstream and downstream tracking stations
 - 4 Tm warm dipole magnet
- □ Particle identification done by:
 - □ RICH detectors
 - Calorimeters
 - Muon stations
- □ Partial information from calorimeters and muon system contribute to **L0 trigger** (hardware) that works at LHC clock **40 MHz**
- □ Full detector readout at 1 MHz

Introduction – LHCb detector

Tracking system – precise momentum reconstruction, vertexing, decay time resolution

Excellent PID using RICH detectors (cover different momentum range), calorimeters and muon chambers in concert

[JINST 3 (2008) S08005]

Introduction – LHCb detector

- Tracking system precise momentum reconstruction, vertexing, decay time resolution
- Excellent PID using RICH detectors (cover different momentum range), calorimeters and muon chambers in concert

[JINST 3 (2008) S08005]

Are these interesting times – cracking the SM (I)

$B^0 \rightarrow K^* \mu^+ \mu^-$: NP in loops

- In order to limit the hadronic uncertainties (form factors) a new base of observables proposed
- Analysis done in 2013 and repeat in 2015 with the full RUN I data sample
- Observed discrepancy may be a hint of new heavy neutral Z' particle
- □ Belle reported very similar result @ LHCSki'16 conference!

(PRL 111, 191801 (2013))

Are these interesting times – cracking the SM (II)

LFU Violation

- In the SM the couplings between the intermediate bosons and all lepton families should be the same
- □ Any departure from this would be a signal of New Physics
- \Box LHCb studied the ratio, R_k , using two rare decay channels
- Very sensitive to new particles exchanged in the virtual loops

LHCb can also participate in 'exotic' physics...

- □ Spectroscopy some world best measurement
- Penta-quarks
- Electro-weak physics in forward region
- □ Ion runs this is actually awesome...
- □ Soft QCD exclusive production

Overall summary of Run I

LHCb:

- Superb performance greatly exceeded any expectations
- Stable operation at inst. luminosity 100% higher than nominal
- □ General purpose detector in forward direction
- Many world leading results
- Over 250 papers published!

Still waiting for a crack in the SM

- □ No conclusive BSM physics discovered
- □ There is still room for NP!
- Need push precision to the limits in order to challenge theoretical predictions
- We are taking more data as we speak hope for new fantastic results soon!

Data taking road map for LHCb (RUN I - RUN III)

LHC LS3 HL-LHC

Upgrade Plans

Why upgrade (i.e., what's wrong with the current design...?)

Superb performance – but 1 MHz readout is a sever limit

- □ can collect ~ 2 fb⁻¹ per year, ~ 8 fb⁻¹ for Run I and II of the experiment
- □ this is not enough if we want to move from **precision** exp to **discover**y exp
- cannot gain with increased luminosity trigger yield for hadronic events saturates

Upgrade plans for LHCb do not depend on the LHC machine

 $\hfill\square$ we use fraction of the luminosity at the moment

Upgrade P I target

- □ full event read-out@30 MHz (flexible approach)
- □ completely new front-end electronics needed (on-chip zero-suppression)
- □ redesign DAQ system
- □ HLT output@2 5 GB/s, more than 50 fb⁻¹ Run III and IV (Upgrade P I b)
- □ increase the yield of events (up to 10x for hadronic channels)
- experimental sensitivities close or better than the theoretical ones
- expand physics scope to: lepton flavour sector, electroweak physics, exotic searches and QCD

Sensitivities to key flavour observables

(for more see: LHCb Upgrade: Technical Design Report, LHCb-TDR-12)

Туре	Observable	Current	LHCb	Upgrade	Theory
		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s o \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s o K^{*0} ar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 o \phi K^0_S)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s \to J/\psi\phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s \to \phi \gamma)$	-	0.07	0.02	< 0.01
currents	$\mathcal{A}^{\Delta\Gamma_s}(B_s o \phi \gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	${\cal B}(B_s o \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$\frac{\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)}{\mathcal{B}(B_s \rightarrow \mu^+ \mu^-)}$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	2.5×10^{-3}	2×10^{-4}	4×10^{-5}	-
CPV	$A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)$	4.3×10^{-3}	4×10^{-4}	8×10^{-5}	-

Projected running conditions for the upgrade

- Operational luminosity up to $L_{inst} = 2 \times 10^{33} [cm^{-2}s^{-1}]$
- 25 ns bunch time spacing
- □ Average number of visible interaction per x-ing $\mu \approx 2.6$
- Challenging environment for tracking and reconstruction
- Radiation damage

High µ already seen in LHCb!

RUN I – the beggining 2kHz readout

Problem for hadronic channels:

saturation with increasing luminosity
no gain in event yields

RUN I – evolution – 5kHz readout

15

Revolution in HEP data acquisition system a.k.a. RUN II LHCb Trigger

RUN III a.k.a. upgraded LHCb Trigger

17

Tracking is at heart of the current LHCb success

Upgrade cannot compromise this performance

□ This is not an easy task

At high luminosity we are expecting

- More interactions per x-ing
- □ Higher track multiplicities, more vertices, higher detector occupancy
- □ More ghosts (scary and dangerous in many ways...)
- □ Spill-over

We need to maintain

- \Box High tracking efficiency (~ 90% for p > 5 GeV)
- \Box High relative momentum resolution (~ 3.5 x 10⁻³)
- \Box Ghost rate as low as possible (less than ~ 10 %)
- □ Single event processing time in HLT as short as possible (~ 25 ms)
- □ And do not add to the material budget...

And in addition all of this using full detector information@40 MHz

What we must change to cope with the 40 MHz read-out

New front-end electronics

- Trigger-less
- □ Sends out data with the machine frequency
- □ On chip zero-suppression (SoC)

VErtex LOcator VELO2

• Current design: R- Φ geometry Si strip sensors with pitch between 38 – 100 μ m

- To be replaced with pixel based device
 - Iow occupancy
 - much easier patter recognition
 - easier to control alignment
 - radiation hardness
 - extremely high data rate ~ 12 Gbit/s
 - un-uniform data rates/radiation damage
 - □ micro-channel CO₂ cooling

Read-out ASIC, VeloPix, based on TimePix/Medipix chip

- □ 256x256 pixel matrix
- equal spatial resolution in both directions
- □ IBM 130 nm CMOS process
- great radiation hardness potential ~ 500 Mrad

VErtex LOcator VELO2

Predicted performance superior in almost any aspect w.r.t the current VELO
This is essential for physics performance of the upgraded spectrometer
TDR document is out!

TT and T (IT + OT) trackers

- TT and IT part of the T stations are Si strips based detectors
 - 🗖 pitch 200 µm
 - □ long strips 11, 22 and 33 cm
- OT is a gaseous detector
 - □ very long (2.4 5 m)
 - □ and thin straws (5 mm)
 - \Box occupancy limited to ~ 10 25 %

World's best b hadrons mass measurement!

TT tracker upgrade

Features after the upgrade

high momentum track on-line selection (part of the trigger)

□ reconstruct long lived particles decaying outside the VELO

momentum estimate for slow particles

improved matching with VELO segments

Upgrade technology

4 - 6 detector planes of Si strip detectors
reduced silicon thickness 500 → 300 µm
strip length 2.5 - 10 cm
increase acceptance at low η
new read-out electronics with on-chip zero-suppression SALT chip

(Tracking Upgrade: Technical Design Report, LHCb-TDR-15)

T stations upgrade

Full Fibre Tracker

• Fiber Tracker

□ IT and OT removed completely and replaced with scintillating fibres

□ Six layers of 2 x 2.5 m long fibres with diameter of 250 μ m

Readout with SiPM (Silicon Photo Multipliers)

□ SiPM cooled to -40 deg due to neutron radiation

Low mass

□ Hit efficiency better than 99%

Fast track reconstruction

 \Box Spatial resolution about 75 μ m

Particle ID and Calorimeters

MaPMTs by Hamamatsu

Both RICH1 and RICH2 remains

new photo detectors (MaPMTs)
square design to increase coverage
40 MHz read-out ASIC
remove aerogel (cannot operate at expected luminosities)

ASIC prototype

Calorimeters (ECAL and HCAL) are maintained

PS/SPD removed (no L0!), e/γ separation provided by tracker (worked out in HLT)
inner modules of the ECAL may be replaced due to radiation damage (LS3)
front-end electronics adapted to 40 MHz read-out
first prototype ready – under study
lower gain

□ Ok, some vocabulary first, i.e., phases, years and luminosities...

Phase Ib Upgrade, $\mathcal{L} \sim 2 \times 10^{33}$, $\langle \mu \rangle \sim 2$

Phase II Upgrade, $\mathcal{L} \sim 2 \times 10^{34}$, $\langle \mu \rangle \sim 50$

□ A dedicated workshop regarding the long term plans after the RUN III

□ Theatre of Dreams (see <u>ToD web page</u>)

□ Main topics

- □ LHC evolution beyond 2020
- Prospects for various experiments
- □ LHCb upgrade Phase Ib/II
 - □ Vertex detector 4D pixels (timing)
 - □ Tracking
 - Calorimetry and PID
 - Muons
 - Physics prospects

SuperVELO

□ By the end of RUN III LHCb would collect ~ $30 fb^{-1}$ of data □ After Phase Ib/II (RUN IV/RUN V) we could get ~ $50/300 fb^{-1}$

Phase Ib upgrade – low cost improvement of the Phase I detector:

- Improved tracking for low momentum particles new stations installed inside magnet
- □ New muon stations around magnet (using the yoke as shielding)
- □ HCAL must be replaced
- □ ECAL innermost part to be replaced
- Some parts of the SciFi may be replaced due to radiation damage

- □ Phase II upgrade search for new technologies
- \Box LHCb must be able to cope with instantaneous luminosities $\sim 2 \times 10^{34} \ 1/s \cdot cm^2$

- Could re-use the Phase I design must increase separation from the beam (from 5 to 11 mm) and increase the length
- New design based on thinner sensors with timing information, new mechanics, new RF foil and smaller pixels

Tracker

- SciFi design in principle can be used also for Phase II, probably need to put silicon detector for the innermost region
- □ Tracking software challenge need careful tuning

Calorimeter

- □ The inner region must be replaced (rad damage)
- New technologies & higher granularity

🗆 Muon

- □ Rate too high in inner region can be reduced by replacing the HCAL by an iron shielding wall (~ 50% less hits)
- □ Also seek out new technologies and increase the number of channels

Summary

Superb performance of the LHCb experiment during Run I
Large number of world's best physics results
More than 250 papers published

We did not make any considerable dents on the Standard Model

□ Upgrade of the present detector essential for discovery potential of the LHCb – origin of the CP violation and NP

- □ Can collect ~ **50 fb⁻¹** of data between 2019 and 2028
- Base-line technologies of the upgrade have been chosen
- □ Respective TDRs have been/are being submitted to the LHCC

□ We also plan for time beyond the RUN III

