New heavy flavor resonances and Zb states (tbd) at D0

1

The Evolution of a Logo

Bob Hirosky for the D0 Collaboration

Virginia Tech

Bob Hirosky, UNIVERSITY of VIRGINIA

TEVATRON DATA

D0 continues a rich physics program analyzing \sim 10fb⁻¹ of recorded data from \sim 2001-2011

- World's highest energy $p-\overline{p}$ data set (2 TeV C.O.M.)
- Unique physics studies
- Many complementary/competitive
 results in LHC era

THE DO DETECTOR

Multipurpose, large acceptance, well understood detector.

Tracking & Muon System

- Scintillator counters and drift tubes
- Thick calorimeter and iron toroids
- Excellent muon triggering and ID
- Silicon Microstrip Tracker
 Excellent vertex resolution
- Central Fiber Tracker
 Good mass resolution

Excellent for B physics with muons

"Four quark" States

• Four quark distinguished from regular mesons by comparing mass, width, charge, other quantum #s, production and decay modes with predictions

• Exotic 4-quark states are described as tightly bound (tetraquark) or loosely bound (molecule, hadroquarkonium):

Observed four-quark states

- High stat. significance: Z(4430) + $\rightarrow \psi'\pi^+$, X(4140) $\rightarrow J/\psi\phi$, Z_b⁺(10610/50) $\rightarrow Y\pi^+$
- Not well established: Z(4050)+ $\rightarrow \chi_{c1}\pi^+$, Z(4250)⁺ $\rightarrow \chi_{c1}\pi^+$
- X(3872) is probably a mixture of two- and four-quark states
- All of these states can be interpreted as molecules (masses are close to sum of two regular mesons). Also pentaquarks $P_c^+(4450) \rightarrow J/\psi p$, $P_c^+(4380) \rightarrow J/\psi p$

Inclusive Production of X(4140)

X(4140) first observed by CDF in 2009 in decay $B+ \rightarrow X(4140) K^+ \rightarrow J/\psi \phi K^+$

- Observed in decays of B⁺
 - D0 and CMS confirmed the observation
 - X LHCb was unable to confirm and disagrees at 2.4σ with CDF (Phys. Rev. D 85, 091103(R) (2012))

D0:First inclusive X(4140) measurement

Phys. Rev. Let. 115, 232001 (2015), arXiv:1508.07846

 $J/\psi\phi$ is selected in three transverse decay length (Lxy) intervals and in two mass intervals:

- X(4140): M(J/ψφ) < 4.36 GeV
- B_s: 4.8 < M(J/ψφ) < 5.7 GeV

Number of B_s and X(4140) extracted using mass fits.

X(4140) Background

Low Lxy: J Higher Lxy: J

J/ψ mesons with random particles from the ULE
 xy: J/ψ mesons with random products of b hadron decays

Parent	$-0.025 < L_{xy} < 0 \text{ cm}$	$0 < L_{xy} < 0.025 \text{ cm}$	$L_{xy} > 0.025 \text{ cm}$	Sum
B^0_s	191 ± 143	804 ± 169	3166 ± 81	4161 ± 236
X(4140)	511 ± 120	837 ± 135	616 ± 170	1964 ± 248
X(4140) non-prompt	37 ± 26	156 ± 54	616 ± 170	809 ± 175
X(4140) prompt	474 ± 123	681 ± 149	$\equiv 0$	1155 ± 193

Inclusive Production of X(4140)

TABLE III: Summary of X(4140) measurements.

Experiment	Process	Mass (MeV)	Width (MeV)
CDF[2]	$B^+ \to J/\psi \phi K^+$	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{-5.0} \pm 3.7$
CMS [4]	$B^+ \to J/\psi \phi K^+$	$4148.0 \pm 2.4 \pm 6.3$	$28^{+15}_{-11} \pm 19$
D0 [5]	$B^+ \to J/\psi \phi K^+$	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6^{+3.0}_{-8.0}$
D0 (this work)	$\overline{p}p \rightarrow J/\psi \phi + anything$	$4152.5 \pm 1.7^{+6.2}_{-5.4}$	$16.3 \pm 5.6 \pm 11.4$

The non-prompt production rate of X(4140) relative to B_s^{0} is

 $R = 0.19 \pm 0.05 \,(\text{stat}) \pm 0.07 \,(\text{syst})$

The fraction of X(4140) originating from b hadron decays

 $f_b = 0.39 \pm 0.07 \,(\text{stat}) \pm 0.10 \,(\text{syst})$

=> also prompt production of the X(4140)

For Lxy > 250 µm the estimated number of X(4140) from B+ decays is 130±60 and we observe a total of 616±170 implying that other b-hadron decays are contributing to X(4140) production

Initially searching for strong decays of excited $B_s^{**} \rightarrow B_s^{0} \pi^+ \pi^-$

$$\begin{array}{l} X \rightarrow B_{s}^{0} \pi^{\pm} \\ B_{s}^{0} \rightarrow J/\psi \phi \\ J/\psi \rightarrow \mu + \mu \\ \phi \rightarrow K + K - \end{array}$$

Can not differentiate B_s^0 from \overline{B}_s^0

also could have X
$$\rightarrow B_{s}^{* 0} \pi^{\pm}$$

with $B_{s}^{* 0} \rightarrow B_{s}^{0} + \text{missing } \gamma$

$B_s^0 \pi^{\pm} State$

Used full Run II data set 2001-2011 of 10.4 fb^{-1} Require a single muon or dimuon trigger. Select $B_s^0 \to J/\psi\phi$ candidates:

- $2.92 < M(\mu\mu) < 3.25 \text{ GeV}$
- $p_T(K) > 0.7 \text{ GeV}; \ 1.012 < M(KK) < 1.03 \text{ GeV}$
- $5.304 < M(J/\psi K^+K^-) < 5.424 \text{ GeV}; \quad L_{xy}/\sigma(L_{xy}) > 3$

Add a track assumed to be a pion, consistent with coming from PV:

- $p_T(\pi) > 0.5 \text{ GeV}$, $IP_{xy} < 0.02 \text{ cm}$, $IP_{3D} < 0.12 \text{ cm}$
- $p_T(B_s\pi) > 10 \text{ GeV}$

•
$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3$$
 (the "cone" cut)

= angle between B_s^0 and π^{\pm}

Bob Hirosky, UNIVERSITY of VIRGINIA

2 component background model:

"Genuine Background" is the B_s^0 peak: use Monte Carlo B_s^0 peak + random π 71% of total background (*histogram*) \downarrow

background model

efficiency vs m of topological cut

 $F_{bgr}(m_{B\pi}) = \left(C_1 + C_2 \cdot m_0^2 + C_3 \cdot m_0^3 + C_4 \cdot m_0^4\right) \times exp\left(C_5 + C_6 \cdot m_0 + C_7 \cdot m_0^2\right)$

Bob Hirosky, UNIVERSITY of VIRGINIA

HQL 24May, 2016

12

Bob Hirosky, UNIVERSITY of VIRGINIA

HQL

24May, 2016

Fit for $\Delta R < 0.3$ cut:

- M_× = 5567.8 ± 2.9 (stat) MeV
- Γ_× = 21.9 ± 6.4 MeV
 - strong decay! Mass resolution is ± 3.9 MeV r.m.s.
- N_x = 133 ± 31 events
- χ2 = 32.4 for 46 D.O.F

Local significance = sqrt(-2 ln (L0/L max)) = sqrt(43.56) = 6.6 σ

Global significance using Gross & Vitells LEE => 6.1 σ

Statistical uncertainties only

$B_s^0 \pi^{\pm} State$

Systematic Uncertainties

	<u>^</u>	2	
Systematic uncertainty	mass, MeV/c^2	width, MeV/c^2	Events, $\%$
Background shape			
a) MC sample soft or hard	+0.2; -0.6	+2.6; -0.	+8.2; -0.
b) Sideband mass ranges	+0.2; -0.1	+0.7; -1.7	+1.6 ; -9.3
c) Sideband mass calculation method	+0.1; -0.	+0.; -0.4	+0; -1.3
d) MC to sideband events ratio	+0.1; -0.1	+0.5; -0.6	+2.8; -3.1
e) Background function used	+0.5; -0.5	+0.1; -0.	+0.2; -1.1
f) B_s^0 mass scale, MC and data	+0.1; -0.1	+0.7; -0.6	+3.4; -3.6
Signal shape			
a) Detector resolution	+0.1; -0.1	+1.5; -1.5	+2.1; -1.7
c) Non-relativistic BW	+0.; -1.1	+0.3; -0.	+3.1; -0.
d) P-wave BW	+0.; -0.6	+3.1; -0.	+3.8; 0.
Others			
a) Binning	+0.6 ; -1.1	+2.3;-0.	+3.5; -3.3
Total	+0.9; -1.9	+5.0; -2.5	+11.4 ; -11.2

applying ± 11.3% systematic uncertainty to yield of X(5568) reduces significance to 5.1 σ (incl. LEE & syst.)

Alternate method: Use all $J/\psi \phi$ with $4.8 < M(J/\psi \phi) < 6 \text{ GeV}$ and later fit for B₀ rather than mass selection cut

This removes the "combinatorial" background component fix M_x and Γ_x fit $N_x = 118 \pm 22$ events

$B_s^0 \pi^{\pm} State$

a cross-check

$p_T(B_s^0)$	10-15	15-30	GeV
N _X	58.6	67.5	
21	± 16.7	± 21.8	events
M _X	5566.3	5568.9	MeV
	± 3.3	± 4.4	MeV
Г _{<i>х</i>}	18.4	21.7	MeV
	± 7.0	± 8.4	MeV

background shape varies, but M_X and Γ_X do not!

$B_s^0 \pi^{\pm} State$

without ΔR cut

do we see $B_c^{\pm} \rightarrow B_s^0 \pi^{\pm}$?

cross-checks

$B_{s}^{0}\pi^{\pm}STATE$

Variety of cross-checks performed

Use left (right) sideband for the non- B_s^0 background Use two versions of Pythia for the B_s^0 background Compare sidebands with "undersignal" Allow background shape parameters to be free Extract the signal yield without the cone cut Use different B_s^0 mass ranges; modify the B_s^0 vertex cuts Compare π^+ and π^- subsamples Examine different detector regions (ϕ, η) Test $B^0_s K$ and $B^0_s p$ hypotheses Study $m(B_d^0\pi^{\pm})$ on the full Run II data sample Look for decay $B_s^{**} \to B_s^0 \pi^+ \pi^-$

Cross-check: mass V. ΔR

$B_0^{\Pi^{\pm}}$ State

Fitted M_{χ} is independent of the ΔR cut - cone cut doesn't generate peak

even though relative positions of signal peak & maximum of background vary

Normalize to B_s production $B_s^0 \pi^{\pm} STATE$

How many X(5568) particles are produced?

Ratio = $\sigma(X)^* \mathcal{E}(X \rightarrow B_s \pi) / \sigma(Bs)$

Since we have same B_s decay mode,

 $\sigma(X)^* \mathcal{B}(X \to B_s \pi) / \sigma(B_s) = \mathsf{N}(X \to B_s \pi)$

 $N(B_s)$ eff(π) ~ 34 %

$10 < p_T(B_s^0) < 15 \text{ GeV}/c$	$15 < p_T(B_s^0) < 30 \text{ GeV}/c$
58.6 ± 16.7	67.5 ± 21.8
5566.3 ± 3.3	5568.9 ± 4.4
18.4 ± 7.0	21.7 ± 8.4
2463 ± 63	1961 ± 56
$(26.1 \pm 3.2)\%$	$(42.1 \pm 6.5)\%$
$(9.1 \pm 2.6 \pm 1.6)\%$	$(8.2 \pm 2.7 \pm 1.6)\%$
	$10 < p_T(B_s^0) < 15 \text{ GeV}/c$ 58.6 ± 16.7 5566.3 ± 3.3 18.4 ± 7.0 2463 ± 63 $(26.1 \pm 3.2)\%$ $(9.1 \pm 2.6 \pm 1.6)\%$

average Ratio(10 < $p_T(B_s)$ < 30 GeV) = $\sigma(X)^* \mathcal{E}(X \rightarrow B_s \pi) / \sigma(B_s) = (8.6 \pm 1.9 \pm 1.4)\%$

Interpretations:

4 different flavors = b, s, u, d $X(5568)^{\pm} \rightarrow B_{s}^{0} \pi \pm \text{with JP=0}^{+}$ also possible $X(5615) \pm \rightarrow B_{s}^{*0} \pi^{\pm} \text{ with JP = 1}^{+}$

$$M_{\chi} = 5567.8 \pm 2.9(stat) + 0.9 (syst) MeV$$

- 1.9

significance of 5.1 σ incl. LEE & systematics

```
\sigma(X)*B (X → B<sub>s</sub><sup>0</sup>π)/\sigma(B<sub>s</sub><sup>0</sup>) = (8.6 ± 1.9 ± 1.4)%
→ 8-9% of B<sub>s</sub><sup>0</sup> are from X(5568)±
```


CONCLUSIONS

- Prompt production of X(4140) has been studied by D0
 - The fraction of X(4140) produced in the decays of b-hadrons is $f_b = 0.39\pm0.07$ (stat) ± 0.10 (syst)
 - Find both prompt (4.7 σ) and non-prompt production (5.6 σ)
 - The resulting mass and width agree with the values measured by CDF & CMS
- D0 sees a resonant structure in the $B_s \pi^{\pm}$ system with a significance of 5.1 σ (including LEE effect and systematics)
 - We wait for information on additional studies(channels), including all LHC experiments and from CDF

Additional Slides

Bob Hirosky, UNIVERSITY of VIRGINIA

HQL 24May, 2016

24

Alternative signal extraction method

We fit $M(B_s)$ in each $M(B_s p+)$ bin, using second order polinomial to model background and gaussian with fixed mass and width to model signal. With this method (cone cut) we get 118 ± 22 events, comparing with 133 ± 31 using standard method.

No signal for undergaussain events ("false" B_s), agreement with bkgr shape modeled from SB.

Test with $B_d^0 \pi^+$ combination

 $B_d^0 \pi^+$; $B_d^0 \rightarrow J/\psi \ K^{*0}$;

$$J/\psi \rightarrow \mu^+ \mu^-; K^{*0} \rightarrow K^+ \pi^-$$

Cuts are very similar to $B_s^0 \pi^+$ analysis

Cone cut does not produce peaks

D0 published paper: Phys.Rev.Lett.99:172001,2007

Background vs. ΔR

How well does background model fit the data, above the X(5568) peak for M > 5.6 GeV?

HQL 24May, 2016

28

Cross-check: No peaks in $m(B_{_S}{}^0P)$ or $m(B_{_S}{}^0K^{\pm})$

Non-standard states observed with high significance

LHCb-CONF-2016-004 3 fb⁻¹ at 7 & 8 TeV, 2 < η < 5, p_T(B_{c}) > 10 GeV/c $m(B_{c}^{0}\pi^{\pm})$ for $B_{c}^{0} \rightarrow J/\Psi \phi$ and $B_{c}^{0} \rightarrow D_{c}^{-}\pi^{\pm}$ ~ 20 X the sample of B_c^0 decays by D0

note: $X(4140) \rightarrow J/\Psi \phi$ was not seen by LHCb although observed by CDF, CMS, and D0 (two modes) only X(3872) \rightarrow J/ $\Psi \pi^+ \pi^$ was seen by all

30