XIIIth International Conference on Heavy Quarks and Leptons Virginia Tech, Blacksburg (VA), 22-27 May 2016

Exotic Spectroscopy at LHCb

M.Rotondo

Marcello Rotondo

I.N.F.N. Padova LHCb Collaboration

HQL2015

Exotics: charmonium "like" XYZ and beyond

- Many different exotic charmonium "like" states has been seen so far
 - Various explanations are possibile
 - **Excellent tetraquark candidates!**

- Tetraquarks (and pentaquarks) have been widely searched in light quark systems
 - Difficult from experimental and theoretical point of view
- Systems with heavy quarks: better signature and more "reliable" theoretical predictions

Pentaquark candidates $P_{c}(4380)$ and P_c(4450) observed by LHCb

Outline

- Pentaquark candidates in $\Lambda_b \to J/\psi \; p \; K$
 - Amplitude analysis PRL 115 (2015) 072001
 - Moment analysis arXiv:1604.05708 (submitted to PRL)
- Confirmation of the resonant nature of the Z(4430)⁻
 - Amplitude analysis PRL 112 (2014) 222002
 - Moment analysis PRD 92 (2015) 112009
- Confirmation of X(3872) quantum numbers
 - J^{PC} = 1⁺⁺ PRD 92 (2015) 011102
- Tetraquark searches in $B_s\pi$
 - LHCb-CONF-2016-004

The LHCb experiment

M.Rotondo

HQL2015

θ, [rad] 1/2

π/2

0, [rad]

 $3\pi/4$

Exotic J/ ψ p contributions in $\Lambda_b \rightarrow J/\psi$ p K

$\Lambda_b \rightarrow J/\psi \ p \ K \ at \ LHCb$

- PRL 115 (2015) 072001
- Clean sample: more than 26.000 signal candidate
- Background subtracted from sidebands
 - 5.4% of combinatorial background in the signal region

- Unusual feature in $m^2_{J/\psi p}$ at 19.5 GeV²
- Large activity due to Λ^* excited states in the m²_{Kp} at projection

HQL2015

$\Lambda_{\rm b} \rightarrow J/\psi \ p \ K \ projections$

PRL 115 (2015) 072001

- Can interference between Λ* resonances generate a peak in the J/ψ p mass spectra?
 - Full amplitude analysis that incorporate both decay sequences
 - 6-D amplitude fit: invariant masses, helicity angles and decay plane angles

$\Lambda_b \rightarrow J/\psi \ p \ K \ fit \ results$

PRL 115 (2015) 072001

- Considering all Λ* known states
 - Does not improve $m_{J/\psi p}$
- Adding two P_c states improve the fit quality
- Explored all J^P up to 7/2[±]
 - Best fit (3/2 ⁻ ,5/2⁺)
 - Good fit also with (5/2⁺,3/2⁻)

HQL2015

The spectroscopy of Λ* is complex and not completely understood

- High density of states with large widths
- Non resonant contributions could also be present

<u>Only</u> restrict the maximal spin of allowed Λ^* components at given m(Kp)

1604.05708

- Study the Λ_b → J/ψpK decay with a model independent approach respect to the Kp contributions
 - H_0 : hypothesis that the data are described by $\Lambda_b \rightarrow J/\psi \Lambda^* (\Lambda^* \rightarrow pK)$

HQL2015

- Efficiency-corrected and background subtracted mass distribution
 - Interpolation to obtain *F*(m_{Kp} | H₀)

• Expand $\cos\theta_{\Lambda^*}$ in Legendre polynomials

$$\frac{dN}{d\cos\theta_{\Lambda^*}} = \sum_{l=0}^{l_{\max}} \langle P_l^U \rangle P_l(\cos\theta_{\Lambda^*})$$

Moments from data in bins of m_{Kp}

$$\langle P_l^U \rangle^k = \sum_{i=1}^{n_{\text{cand}}^k} (w_i / \epsilon_i) P_l(\cos \theta_{A^*}^i)$$

Maximal rank l_{max} , cannot be higher than $2J_{max}$: J_{max} is the highest (Kp) spin which is present in the data at a given m_{Kp} value

Filter out maximum spin for each m_{Kp}

Expand $\cos\theta_{\Lambda^*}$ in Legendre polynomials

$$\frac{dN}{d\cos\theta_{\Lambda^*}} = \sum_{l=0}^{l_{\max}} \langle P_l^U \rangle P_l(\cos\theta_{\Lambda^*})$$

Moments from data in bins of m_{Kp}

$$\langle P_l^U
angle^k = \sum_{i=1}^{n_{\text{cand}}^k} (w_i / \epsilon_i) P_l(\cos \theta^i_{\Lambda^*})$$

Maximal rank l_{max} , cannot be higher than $2J_{max}$: J_{max} is the highest (Kp) spin which is present in the data at a given m_{Kp} value

M.Rotondo

1604.05708

- Generate high statistics toy MC:
 - Phase space $\Lambda_b \rightarrow J/\psi \ pK$
 - Weight according to m_{Kp} and the moments (filter out l_{max} according to m_{Kp})

1604.05708

Search for reflections of the Kp system into the J/ψp system

Charged exotic Z(4430)[±]

Z(4430)⁺ charged charmonium exotic

- Charged charmonium like state in $B^0 \rightarrow \psi(2S)\pi$ K decays
 - Belle PRL 100 (2008) 142001, PRD 79 (2009) 112001, PRD 80 (2009) 031104
 - BaBar PRD 79 (2009) 112001 Not observed but not in contradiction with Belle

• $B^0 \rightarrow Z(4430) \text{ K}, Z(4430) \rightarrow \psi(2S)\pi$

Confirmation of the Z(4430)⁺ by LHCb

Z(4430): resonant nature

PRL 112 (2014) 222002

magnitude

-0.2

0

0.2

 $\operatorname{Re} A^{Z^{-}}$

17

4277 MeV

phase

4605 MeV

Z(4430): model independent analysis

PRD 92 (2015) 112009

- Check if the structures in the $m_{\psi(2S)\pi}$ spectrum can be explained as reflections of the resonance activity in the K π system
 - No assumptions on the K* resonances: only its maximum J is restricted
 - Angular structure of the $K\pi$ system is extracted with Legendre polynomial moments

Z(4430): model independent analysis PRD 92 (2015) 112009

- Large toy MC with events weighted according to the moments to predict the $m_{\psi(2S)\pi}$ spectrum

 Hypothesis test based on likelihood ratio

Hypothesis that the structure of the $m_{\psi(2S)\pi}$ spectrum can be described as reflection of the activity of the resonances in the K π system is ruled out with more than 8 σ

Properties of X(3872) state

X(3872)

Mass close to DD* threshold

M(X) = 3871.68 ± 0.17 MeV M(D*)+M(D) = 3871.85 ± 0.20 MeV

- Still debates: molecular state? Tetra-quark? Mixture? Ordinary charmonium?
- Crucial unambiguous quantum number J^{PC} determination
 - Decay to $J/\Psi\gamma$ and $\Psi(2S)\gamma \rightarrow C=+1$
 - Using X(3872) \rightarrow J/ $\Psi\pi^{+}\pi^{-}$ decay CDF establish 1⁺⁺ or 2⁻⁺
 - With 1fb⁻¹ LHCb rules out $2^{-+} \rightarrow J^{PC} = 1^{++}$
 - CDF and LHCb assumed minimal L, this assumption is not obvious

X(3872): angular analysis PRD 92 (2015) 011102

 $B^+ \to X(3872) K^+, \, X(3872) \to J/\psi \rho^0$, $J/\psi \to \mu^+\mu^-, \, \rho^0 \to \pi^+\pi^-$

X(3872): J^{PC} = 1⁺⁺ confirmed PRD 92 (2015) 011102

- Decay mainly through S-wave
- Total D-wave contribution < 4% @95% C.L.
- The $\rho(770) \rightarrow \pi\pi$ dominates

Search for exotics in $B_s\pi$ mass spectrum

The X(5568)?

- ArXiv: 1602.07588: D0 new state $X(5568) \rightarrow B_s \pi$
 - 5.1σ significance and high production rate: minimal quark content bsud

LHCb data sample of B_s

- Cut-based selection for clean B_s sample
- Mass constraints on J/ψ and D_s to improve mass resolution

LHCb-CONF-2016-004

- Huge and clean sample of $\rm B_s$ mesons
 - 20 times the D0 sample

B_sπ mass spectrum LHCb-CONF-2016-004

- Add a pion, requiring that it comes from the same PV
- Signal shape is a BW with parameters from D0 collaboration

M.Rotondo

HQL2015

Bs

′B*

Conclusions

Summary

- Many new states discovered since the first observation of the X(3872)
 - Some of them have been observed by many experiments, other need confirmations
- Crucial to study these states in different production and decay modes
 - Look for isospin/charged partners
 - Measure Branching ratios
 - Full angular analysis to establish the quantum numbers and exclude some dynamical production mechanisms: threshold, rescattering...
- P_c states are good candidate for penta-quarks
 - Loosely bound molecule? Tightly bound penta-quarks? Hybrid?
 - Extensive experimental program ahead

LHCb, CMS, ATLAS, BaBar, Belle, Belle-II, BES-III, COMPASS: all have role to play

- Amplitudes for 6 bins of $m_{J/\psi p}$ between - Γ and + Γ

HQL2015

$\Lambda_b \rightarrow J/\psi$ pc K fit results

PRL 115 (2015) 072001

Confirmation of the Z(4430)

Z(4430): model independent analysis

M.Rotondo

HQL2015

PRD 92 (2015) 112009

Z(4430): model independent analysis

- Hypothesis test based on likelihood ratio
 - Physical configurations compared with prediction with $I_{max} = 30$

Hypothesis that the structure of the $m_{\psi(2S)\pi}$ spectrum can be described as reflection of the activity of the resonances in the $K\pi$ system is ruled out with more than 8σ

PRD 92 (2015) 112009