

RÉGION

CHAMPAGNE

II. Physikalisches

Latest Results of Double Chooz

Stefan Schoppmann for the Double Chooz Collaboration

The XIIIth International Conference on Heavy Quarks and Leptons

May 23, 2016

Outline

• Experimental Setup

• The Neutrino Detection

• The Two Detector Dataset

• Oscillation Analysis

• Summary/Outlook

Stefan Schoppmann

Experimental Setup

Experimental Site

Stefan Schoppmann

Latest Results of Double Chooz

Stefan Schoppmann

The Detectors

Stefan Schoppmann

Latest Results of Double Chooz

The Neutrino Detection

Stefan Schoppmann

Neutrino signal

Inverse beta-decay: $\bar{\nu}_e + \mathrm{p}^+ \to \mathrm{e}^+ + \mathrm{n}$ prompt ve delayed Gd 🧾 Delay due to thermalisation of neutron 30 µs before capture **e**⁺ n-Gd 🖾 8 MeV

Stefan Schoppmann

- \rightarrow measured in experiment
- \rightarrow vetoed by Outer or Inner Veto Sources:
- → atmospheric muons
- → intrinsic radioactivity

Backgrounds:

 \rightarrow mimic inverse- β -decays (IBDs)

Uncorrelated (accidentals):

→ intrinsic radioactivity + spallation neutrons

Correlated:

- \rightarrow fast neutrons (FN): p recoil + n capture
- \rightarrow stopping μ (SM): μ + Michel electron
- → unstable isotopes (9Li/8He): β -n decay

Latest Results of Double Chooz

netitut R

The Two Detector Dataset

Stefan Schoppmann

IBD selection

10

Background vetos

Cut name	Information used	Target of cut
μ veto	1ms veto after μ	µ, cosmogenic
Multiplicity	unicity condition	multiple-n
FV veto	vertex likelihood	chimney stop-µ
IV veto	IV activity	fast n, stop-μ, γ scattering
OV veto	OV activity	fast n, stop-µ
Li veto	Li-likelihood	cosmogenic
LN cut	PMT hit pattern & time	light emission from PMT
(CPS veto)	chimney likelihood	stop-µ
(Qratio)	Max Q/Tot. Q	ND buffer stop-
		μ

(only applied in multi-detector analysis)

Stefan Schoppmann

Latest Results of Double Chooz

Prompt Energy Spectrum

FD-I

Remark: spectra before the oscillation analysis are shown

New Extended Dataset

COLIV-n-Gd (MORIOND) PI	RELIMINARY	50 DC-Gd-IV-MORIOND va	DC-IV-n-Gd (MORIONE) PRELIMINARY
Crive-Gd (MORIOND) PRELIMINARY		Provide understand und		D-II 200 250 300 Time (day)
	FD-I	Reactor-off	FD-II	ND
Live-time (d) (after μ veto)	460.93	7.24	212.21	150.76
IBD prediction (d ⁻¹)	38.04±0.67	0.217±0.065	40.39±0.69	280.5±4.7
Accidental BG (d ⁻¹)	0.070±0.003		0.106±0.002	0.344±0.002
Fast-n + stop-μ (d ⁻¹)		0.586 ±0.061		3.42 ±0.23
Cosmogenic (d ⁻¹)		(0.97 ^{+0.41} _{-0.16})		(5.01 ±1.43)
Total prediction (d ⁻¹)	39.63±0.73	1.85±0.30	42.06±0.75	289.3±4.9
IBD candidates (d ⁻¹)	37.64	0.97	40.29	293.4
(number of events)	(17351)	(7)	(8551)	(44233)

 \rightarrow 9 month of two detector data added to previous single detector dataset

- \rightarrow Cosmogenic background rate not used as input
 - \rightarrow constrained by oscillation analysis

Suppression of Uncertainties

- Systematic errors suppressed with two detectors and in rate+shape fit ⇒ All systematic uncertainties below < 0.4% (after R+S fit)
- Current precision (9 months ND) is limited by the statistical uncertainty

- → Uncertainty in reactor flux normalisation suppressed by adding Bugey4 (15m baseline) flux measurement
- → Reactor flux uncertainty in two detector setup further suppressed due to nearly iso-flux ratio between ND and FD-II

al a prelimin	nary			
Double Chooz Freine	FD-I (%)	FD-II (%)	ND (%)	
Bugey4	1.40	1.40	1.40	
Energy per fission	0.16	0.16	0.16	Correlated across FD-I, FD-II and ND
Spectrum⊕ $\sigma_{_{\mathrm{IBD}}}$	0.20	0.20	0.20	
Baselines	< 0.01	< 0.01	0.01	
Fission fraction ($\boldsymbol{\alpha}_k$)	0.82	0.74	0.73	Uncorrelated
Thermal power (P_{th})	0.44	0.44	0.44	⇒ suppressed with two detectors (in
Total	1.70	1.66	1.66	parallel operation)
ρ(FD-I:FD-II)	0.72 (0.90% relative)			
ρ(FD-II:ND)	>0.99 (0.07% relative)			
	Inter (mos	r-reactor corre st conservative	elation for α _k e assumption	and P_{th} : $\rho_{B1/B2} = 0.78$ with current data set)

Double Chooz Preliminary

	FD-I	FD-II	ND
BG vetoes (%)	0.11 (0.11)	0.09 (0.09)	0.02 (0.02)
Gd fraction (%)	0.25 (0.14)	0.26 (0.15)	0.28 (0.19)
IBD selection (%)	0.21 (0.21)	0.16 (0.16)	0.07 (0.07)
Spill in/out (%)	0.27 (0)	0.27 (0)	0.27 (0)
Proton number (%)	0.30 (0)	0.30 (0)	0.30 (0)
Total (%)	0.49 (<mark>0.26</mark>)	0.47 (<mark>0.22</mark>)	0.38 (0.15)

Numbers in parentheses are uncorrelated uncertainties in multi-detectors analysis (FD-I, FD-II and ND)

→ identical design of detectors suppresses uncorrelated uncertainties

Oscillation Analysis

Stefan Schoppmann

Latest Results of Double Chooz

- → Compare FD-I, FD-II, ND data simultaneously to predictions
 - \rightarrow Background rate and shape estimated by data
 - → cosmogenic rate not constrained
 - → Observed data in reactor off sample as separate background constraint

- → energy non-linearities corrected in oscillation analysis
- → energy scale across detectors uncorrelated (conservative approach)
- \rightarrow many cross-checks (data-only, bkgrd constraint &c)
- → independent analyses using different implementations of statistical and systematic uncertainties

Oscillation Results

III. Physikalisches Institut B

sin²(2θ₁₃)=0.111 ± 0.018 (stat.+syst.)

 $\rightarrow \chi^2/dof = 128.8/120$

FD-I

→ non-zero θ_{13} observation at 5.8 σ C.L.

→ cosmogenic ⁹Li bkgrd: 0.75 ± 0.14 d⁻¹(FD), 4.89 ± 0.78 d⁻¹(ND)

→ fast-n+stop-µ bkgrd: 0.535 ± 0.035 d⁻¹(FD), 3.53 ± 0.16 d⁻¹(ND)

→ energy non-linearity: outcome consistent across

data sets and with calibration

Double Chooz collaboration reported first θ_{13} measurement with two Detectors (FD-I: 460.93 days + FD-II: 212.21days + ND: 150.76days)

- $sin^{2}(2\theta_{13})=0.111 \pm 0.018$ (stat.+syst.)
- reactor flux uncertainty strongly suppressed to < 0.1%
- other systematic uncertainties $\leq 0.5\%$
- ND: un-oscillation spectrum direct observable by experiment
- precision now limited by statistics

 (estimate of systematics also dominated by statistics)
 ⇒ further improvements expected from Double Chooz

Double Chooz Collaboration

Spokesperson: H. de Kerret (IN2P3)

Project Manager: Ch. Veyssière (CEA-Saclay)

Web Site: www.doublechooz.org/

Appendix

Stefan Schoppmann

Latest Results of Double Chooz

IBD-candidate comparison

Excellent agreement between

- all three detectors in
- \rightarrow signal-dominated low energy
- \rightarrow bkgrd-dominated high energy
- \rightarrow delay time
- \rightarrow and all other variables

Remark:

prompt energy spectrum normalised
to integral, i.e. oscillation
effect hidden

Example: stop-µ reduction

Contamination of liquid scintillator in ND Buffer causes buffer stop- μ background

- ⇒ Almost all such backgrounds are rejected by new selections based on
 - \rightarrow Energy dependent MaxQ/TotQ cut
 - → Likelihood at chimney vs. vertex (CPS veto)

III. Physikalisches Institut B

Global comparison

→ DC θ_{13} is higher than other reactor θ_{13} by ~30% (1.4 σ wrt Daya Bay) → Long baseline (T2K, NovA) weakly favours higher θ_{13} than reactor average → Reactor θ_{13} is key parameter to solve CP-violation and mass hierarchy