New Results from RENO & Future RENO-50 Project

Seon-Hee (Sunny) Seo Seoul National University

Heavy Quarks and Leptons Virginia Tech May 22-27, 2016

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(~30 members in 10 institutions)

- Chonnam National University
- Dongshin University
- GIST
- Gyeongsang National University
- IBS
- Kyungpook National University
- Sejong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first reactor experiment running with both near & far detectors from Aug. 2011

RENO Experimental Setup

The RENO Detector

Detection Principle of Reactor Neutrinos

Prompt signal (e⁺) : 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)

 Delayed signal (n): 8 MeV γ's from neutron's capture by Gd in ~30 μs or 2.2 MeV
 by H in ~200 μs

RENO Data-taking Status

Energy Calibration from γ-ray Sources

- Non-linear resonse of the scintillation energy is calibrated using γ-ray sources.
- The visible energy from γ-ray is corrected to its corresponding positron energy.

Energy Scale Difference between Near & Far

HQL @ Virginia Tech 2016

¹²B Energy Spectrum

 Electron energy spectrum from β-decays from ¹²B and ¹²N, which are produced by cosmic-muon interactions.

Good agreement between data and MC spectrum!

Prompt Energy Spectra of IBD Candidates

IBD Candidates & Background

	Near	Far
DAQ live time [days]	458.49	489.93
IBD candidates	290755	31541
Total BKG rate [/day]	17.54 ± 0.83	3.14 ± 0.21
IBD rate [/day] after BKG subtraction	616.67 ± 1.44	61.24 ± 0.42

11

Observed Daily Averaged IBD Rate

- Good agreement with observed rate and prediction.
- Accurate measurement of thermal power by reactor neutrinos

Sunny Seo, SNU

Observation of an excess at 5 MeV

arXiv:1511.05849.v2

Correlation of 5 MeV Excess with Reactor Power

** Recent ab initio calculation [D. Dwyer and T.J. Langford, PRL 114, 012502 (2015)]:

 The excess may be explained by addition of eight isotopes, such as ⁹⁶Y and ⁹²Rb

Results from Spectral Fit

RENO Summary

We obtained new results by rate+shape analysis (500 days).

 $\sin^2 2\theta_{13} = 0.082 \pm 0.009(\text{stat}) \pm 0.006(\text{syst})$

 $\left|\Delta m_{ee}^{2}\right| = 2.62_{-0.23}^{+0.21} (\text{stat.})_{-0.13}^{+0.12} (\text{syst.}) (\times 10^{-3} eV^{2})$

Observed an excess at 5 MeV in reactor neutrino spectrum

• Measurement of θ_{13} from n-H IBD analysis

 $\sin^2 2\theta_{13} = 0.103 \pm 0.014 (\text{stat}) \pm 0.014 (\text{syst})$

(preliminary)

- Sterile neutrino search result will be available soon.
- Goals: ~5% accuracy within 2 years for both $sin(2\theta_{13})$ and $|\Delta m_{ee}^2|$

Overview of RENO-50

 RENO-50 : An underground detector consisting of 18 kton ultralow-radioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit(Yonggwang) nuclear power plant

RENO can be used as Near detector for RENO-50 (reduce sys. error)

- **Goals** : Determination of neutrino mass hierarchy - High-precision measurement of θ_{12} , Δm_{21}^2 and Δm_{ee}^2
- Neutrino astronomy, Geo v, sterile v search, etc.

Budget : \$ 100M for 6 year construction
 (Civil engineering: \$ 15M, Detector: \$ 85M)

 Schedule : 2016 ~ 2021 : Facility and detector construction 2022 ~ : Operation and experiment

J-PARC neutrino beam

Geological Survey for Underground Facility

Cost estimation for RENO-50 underground facility (in progress)

Geological survey for design of tunnel and experimental hall
 Cost estimation to be obtained soon

Conceptual Design of RENO-50 Detector

Status of Funding and R&D

- An R&D funding (US \$ 2M in 3 years, 2015~2017) is given by the Samsung Science & Technology Foundation.
- A proposal has been submitted to obtain construction funding.

→ International Neutrino community's supports will greatly enhance our opportunities !

- A domestic symposium and an international workshop were held in 2013 to discuss the feasibility and physics opportunities.
- R&D is in progress for LS, PMT, DAQ, MC and detector design, in order to prepare a Technical Design Report (TDR).
- International collaboration is expected to be formed.
 You are welcome to join us for R&D and detector construction!

Schedule

2016 : Group organization **Detector simulation & design** Geological survey 2017 ~ 2018 : Civil engineering for tunnel excavation Underground facility ready Structure design PMT evaluation and order, Preparation for electronics, HV, DAQ & software tools, R&D for liquid scintillator and purification 2019 ~ 2021 : Detector construction ■ 2022 ~ : Data taking & analysis

Thank you !

What are the mass ordering of the three neutrinos ?

Physics Goals with RENO-50

• Determination of neutrino mass hierarchy (very challenging) ~3 σ sensitivity from ~10 years of data

■ Precise measurement of θ_{12} , Δm_{21}^2 and $|\Delta m_{ee}^2|$ $\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} < 1.0\%(1\sigma) \qquad \frac{\delta \Delta m_{21}^2}{\Delta m_{21}^2} < 1.0\%(1\sigma) \qquad \frac{\delta \Delta m_{ee}^2}{\Delta m_{ee}^2} < 1.0\%(1\sigma) \qquad \frac{\delta \Delta m_{ee}^2}{\Delta m_{ee}^2} < 1.0\%(1\sigma) \qquad (\leftarrow 2.8\%)$

 Neutrino burst from a Supernova in our Galaxy ~5,600 events @ 8 kpc

Geo-neutrinos : ~ 1,500 geo-neutrinos for 5 years

- Study the heat generation mechanism inside the Earth

- Solar neutrinos : with ultra low radioacitivity detector
- Test MSW effect on neutrino oscillation and solar models
- Sterile neutrino searches : reactor v, radio-sources, IsoDAR v

Detection of J-PARC beam : ~200 events/year

R&D in Progress

(1) Development of DAQ electronics

- Specification for dead time free, high sensitivity and high speed signal processing
- Prototype boards to be tested

(2) Develop techniques of LS purification

- Reduction of LS radioactivity to 10⁻¹⁶ g/g of U and Th
- Removal of LS impurities for attenuation length of ~25 m
- Several methods applied for investigation and evaluation
- Efforts on high sensitive measurement of radioactive concentration and optical parameters in LS

(3) Mechanical design of detector

Detailed drawing of mechanical parts in progress
 MC simulation to estimate the performance

R&D in Progress

(4) Measurement of radioactivity for the detector materials

- Evaluate radioactive contamination of detector parts using a high purity Ge detector
- Estimate event rate contribution of those contaminations

(5) Measurement device for absolute LS attenuation length

Developed a long pipe device with a laser source and a PMT
 Upgrade of the device in progress

- An R&D funding (US \$2M for 3 years of 2015-2017) is given by the Samsung Science & Technology Foundation.
- Efforts on obtaining a full construction fund