Lattice QCD Results for *B*-meson Semileptonic Decay Form Factors and Phenomenology

Ran Zhou

Fermilab (Heavy Quarks and Leptons 2016)

05/27/2016

→ ∃ →

Theoretical Motivation

- *B*-meson semileptonic decays through tree-level diagram $(b \rightarrow u l \nu)$. For example, $B \rightarrow \pi l \nu$, $B_s \rightarrow K l \nu$
- B-meson semileptonic decays through loop-level diagram $(B \to K(\pi) l^+ l^-, B \to K(\pi) \nu \bar{\nu})$

Standard Model prediction

The effective Hamiltonian of the $b \rightarrow d(s)I^+I^-$ transition under OPE with α_s and Λ/m_b corrections is:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{td(s)}^* V_{tb} \sum_{i=0}^{10} C_i(\mu) O_i(\mu) + \dots \qquad (1)$$

the Standard Model prediction can be written in a generic form:

Theo. pred. = (prefactors) × (CKMfactor) ×
$$\langle f | \hat{O} | i \rangle$$
 (2)

- Prefactors contain the Wilson coefficients (short distance physics).
- CKM factor depends on the processes.
- Lattice QCD calculates $\langle f | \hat{O} | i \rangle$ non-perturbatively from first principle. (long distance physics)

(日) (同) (三) (三)

Hadronic matrix elements and form factors

• Matrix elements in $B \to K(\pi)II$ and $B \to \pi I\nu$ processes: $\langle B(p)|\bar{b}\gamma^{\mu}s|K(k)\rangle, \langle B(p)|\bar{s}\sigma^{\mu\nu}b|K(k)\rangle$

$$\begin{split} \langle \mathcal{B}(p) | \bar{b} \gamma^{\mu} s | \mathcal{K}(k) \rangle &= f_{+}(p^{\mu} + k^{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}} q^{\mu}) + f_{0} \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}} q^{\mu} \\ &= \sqrt{2m_{B}} \left[f_{\parallel} \frac{p^{\mu}}{m_{B}} + f_{\perp} k_{\perp}^{\mu} \right] \\ &\left\{ f_{\parallel}(E_{K}) = \frac{\langle \mathcal{B}(p) | \bar{b} \gamma^{0} s | \mathcal{K}(k) \rangle}{\sqrt{2m_{B}}} \\ f_{\perp}(E_{K}) = \frac{\langle \mathcal{B}(p) | \bar{b} \gamma^{i} s | \mathcal{K}(k) \rangle}{2\sqrt{m_{B}}} \frac{1}{p_{i}} \\ &\left\{ f_{0}(E_{K}) = \frac{2m_{B}}{m_{B}^{2} - m_{K}^{2}} \left[(m_{B} - E_{K}) f_{\parallel}(E_{K}) + (E_{K}^{2} - m_{K}^{2}) f_{\perp}(E_{K}) \right] \\ f_{+}(E_{K}) = \frac{1}{\sqrt{2m_{B}}} \left[f_{\parallel}(E_{K}) + (m_{B} - E_{K}) f_{\perp}(E_{K}) \right] \end{split}$$

Hadronic matrix elements and form factors

Semileptonic $B \rightarrow K$ transition from tensor current:

$$q_{\nu}\langle K(k)|\bar{s}\sigma^{\mu\nu}b|B(p)\rangle = \frac{if_{T}}{m_{B}+m_{K}}\left[q^{2}(p^{\mu}+k^{\mu})-(m_{B}^{2}-m_{K}^{2})q^{\mu}\right]$$

Solve for f_T :

$$f_T = \frac{m_B + m_K}{\sqrt{2m_B}} \frac{\langle K(k) | ib\sigma^{0i}s | B(p) \rangle}{\sqrt{2m_B}k^i}$$

• • = • •

Lattice ensembles used in $B \to K(\pi)$ works

Figure : Ensembles of QCD gauge field configurations used in the simulations.

Ran Zhou (Fermilab)

f_{\parallel} , f_{\perp} chiral-continuum extrapolations

- Form factors defined in the continuum are extrapolated from lattice data.
- Lattice-QCD gives form factors in the low recoil $(E_{K(\pi)})$ region.
- *z*-expansion is used to extrapolate lattice-QCD results to the whole q^2 region; talk by Benjamin Grinstein (previous).

Form Factor Results From Lattice QCD

Form factor results from lattice QCD

- $B \rightarrow \pi I \nu$ and $B \rightarrow \pi I I$ form factors
- $B \rightarrow KII$ form factors
- $B_s \rightarrow K I \nu$ form factors

• • • • • • • • • • • •

Lattice-QCD $B \rightarrow \pi I \nu$ and $B \rightarrow \pi I I$ form factors

 $B \rightarrow \pi l \nu$ and $B \rightarrow \pi l l$ occur through $b \rightarrow u l \nu$ and $b \rightarrow d l l$ transitions. Results from RBC/UKQCD.

Figure : $B \rightarrow \pi I \nu$ form factors from arXiv:1501.05373.

• Fit together with experimental data and *z*-expansion fit, lattice QCD can get accurate form factors (*f*₊, *f*₀) in the whole *q*² region.

Lattice-QCD $B \rightarrow \pi I \nu$ and $B \rightarrow \pi II$ form factors Latest results from FNAL/MILC.

Figure : $B \rightarrow \pi l \nu$ and $B \rightarrow \pi l l$ form factors from arXiv:1509.06235 and arXiv:1507.01618.

- FNAL/MILC updated form factors with more statistics and ensembles.
- The first lattice calculation of f_T in $B \rightarrow \pi II$ process is available.

Lattice-QCD $B \rightarrow \pi I \nu$ and $B \rightarrow \pi I I$ form factors

▶ < ∃ ▶ < ∃</p>

Lattice-QCD $B \rightarrow KII$ form factors

 $B \rightarrow KII$ occurs through $b \rightarrow sII$ transitions.

Figure : Comparison of the $B \rightarrow KII$ form factors. Fermilab/MILC (Lattice), HPQCD (Lattice) and LCSR results are from arXiv:1509.06235, arXiv:1306.2384, and arXiv:1006.4945.

Lattice-QCD $B_s \rightarrow K I \nu$ form factors

 $B_s
ightarrow {\it K} l
u$ occurs through $b
ightarrow {\it u} l
u$ transitions.

Figure : $B_s \rightarrow K l \nu$ form factors from RBC/UKQCD (left, arXiv:1501.05373) and HPQCD (right, arXiv:1406.2279).

05/27/2016 13 / 28

Lattice-QCD $B_s \rightarrow K I \nu$ form factors

Figure : $B_s \rightarrow K l \nu f_+$ and f_0 error budget. (HPQCD arXiv:1406.2279)

 ▶
 ₹
 >
 >
 >

 >

 >

 >

 <th</th>

 <th</th>
 <th</th>

 <

イロト イ団ト イヨト イヨト

Lattice-QCD $B_s \rightarrow K I \nu$ form factors

Figure : Comparison of lattice-QCD $B_s \rightarrow K$ form factors (arXiv:1406.2279) with those from a perturbative QCD model (arXiv:1207.0265) and the relativistic quark model (arXiv:1304.3255).

- ∢ ∃ ▶

Semileptonic B-meson decay phenomenology

Impact of lattice-QCD form factors to Standard Model Phenomenology. Tree-level process:

• $B \rightarrow \pi l \nu$ and $|V_{ub}|$ determination. (arXiv:1503.07839)

Loop-level process:

- $B \rightarrow K l^+ l^ (l = e, \mu, \tau)$ (arXiv:1509.06235, arXiv:1510.02349)
- $B \to \pi l^+ l^-$ ($l = e, \mu, \tau$) (arXiv:1503.07839, arXiv:1507.01618)
- $B \rightarrow \pi \nu \bar{\nu}$, $B \rightarrow K \nu \bar{\nu}$ (arXiv:1510.02349)

くほと くほと くほと

 $B
ightarrow \pi I
u$ semileptonic decay and $|V_{ub}|$

Figure : $B \rightarrow \pi I \nu$ exclusive decay process.

$$\begin{aligned} \frac{d\Gamma}{dq^2} &\propto |V_{ub}|^2 |f_+(q^2)|^2 \quad \text{Exp.} \\ \langle \pi | V^{\mu} | B \rangle &= f_+(q^2) \left[p_B^{\mu} + p_{\pi}^{\mu} - \frac{M_B^2 - M_{\pi}^2}{q^2} q^{\mu} \right] + f_0(q^2) \frac{M^2 - m^2}{q^2} q^{\mu} \\ q^2 &= (p_B - p_{\pi})^2 = M_B^2 + M_{\pi}^2 - 2M_B M_{\pi} E_{\pi} \end{aligned}$$

Ran Zhou (Fermilab)

 $B \rightarrow \pi I \nu$ semileptonic decay and $|V_{ub}|$

This work + BaBar + Belle, $B \rightarrow \pi l v$ Fermilab/MILC 2008 + HFAG 2014, $B \rightarrow \pi l v$ RBC/UKQCD 2015 + BaBar + Belle, $B \rightarrow \pi l v$ Imsong *et al.* 2014 + BaBar12 + Belle13, $B \rightarrow \pi l v$ HPQCD 2006 + HFAG 2014, $B \rightarrow \pi l v$ Detmold *et al.* 2015 + LHCb 2015, $\Lambda_b \rightarrow p l v$ BLNP 2004 + HFAG 2014, $B \rightarrow X_u l v$ UTFit 2014, CKM unitarity

Figure : Comparison of the $|V_{ub}|$ results from different determinations. (arXiv:1503.07839)

$B_s \rightarrow K I \nu$ semileptonic decay and $|V_{ub}|$

Figure : Theoretical predictions on differential decay rates, divided by $|V_{ub}|^2$, for $B_s \to K \mu \nu$ and $B_s \to K \tau \nu$. (arXiv:1406.2279)

05/27/2016

19 / 28

Standard Model predictions

- Left: FNAL/MILC $B \rightarrow \pi$ lattice data + exp (arXiv:1503.07839)
- Right: (arXiv:1312.2523): old FNAL/MILC $B \rightarrow \pi$ lattice data (arXiv:0811.3640) + HPQCD's $B \rightarrow K$ lattice data(arXiv:1306.2384) + exp + LCSR + model

Standard Model predictions of $B \rightarrow K I^+ I^-$ process

Figure : Standard-Model differential branching fraction (gray band) for $B \rightarrow K\mu^+\mu^-$ decay (left) and $B \rightarrow K\tau^+\tau^-$ (right) using the form factors obtained from lattice QCD. Experimental results for $B \rightarrow K\mu^+\mu^-$ are from Belle (arXiv:0904.0770), CDF (arXiv:1107.3753), BaBar (arXiv:1204.3933), and LHCb (arXiv:1403.8044). The BaBar, Belle, and CDF experiments report isospin-averaged measurements, while LHCb separately reports results for B^+ and B^0 decays.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Resonance states in $B \rightarrow K I^+ I^-$ process

- The resonance states could have contribution to the final result of dB/dq^2 . The plot is quoted from arXiv:1406.0566.
- We focus on the results in larger bins.

Lepton flavor violation in $B \to K(\pi) II$ process

Lepton-flavor-violating effect in the $B \to K(\pi) II$ process is defined as:

$$R^{\mu,e}(q_1^2,q_2^2) = \frac{\int_{q_1^2}^{q_2^2} dq^2 \, d\mathsf{BR}(B \to K\mu^+\mu^-)/dq^2}{\int_{q_1^2}^{q_2^2} dq^2 \, d\mathsf{BR}(B \to Ke^+e^-)/dq^2},$$
(3)

- $R^{\mu,e}$ is close 1 in Standard Model for $B \to KII$ and $B \to \pi II$ processes.
- BaBar found $R_K^{\mu,e} = 1.00 \binom{+31}{-25}(7)$ in the union of $[0.1, 8.12] \text{GeV}^2$ and $[10.11, q_{\max}^2] \text{GeV}^2$. (arXiv:1204.3933)
- Bell found $R_K^{\mu,e} = 1.03 \binom{+19}{-6}$ in the full q^2 range. (arXiv:0904.0770)
- LHCb found $R_{K}^{\mu,e} = 0.745 \binom{+90}{-74}(36)$ which is 2.6 σ away from 1. (arXiv:1406.6482)
- New physics models and lepton flavor violation. (arXiv:1411.0565, arXiv:1508.07009, *etc.*)

イロト 不得 トイヨト イヨト 二日

Lepton favor violation in $B \to K(\pi) II$ process

Figure : Standard-Model lepton-flavor-violating ratios $(R_{K^+}^{\mu e} - 1)$ (left) and $(R_{\pi^+}^{\mu e} - 1)$ (right) for $(q_{\min}^2, q_{\max}^2) = (1 \text{GeV}^2, 6 \text{GeV}^2)$ and $(15 \text{GeV}^2, 22 \text{GeV}^2)$ using the lattice form factors. Our result is consistent with HPQCD's (arXiv:1306.0434), but different from LHCb's experimental data.

Other Important Topics

Heavy to light meson semileptonic decay form factors:

- $D
 ightarrow \pi l
 u$ (c
 ightarrow d) form factors at zero recoil. (arXiv:1206.4936)
- $D \rightarrow K l \nu \ (c \rightarrow s)$ form factors at nonzero recoil. (arXiv:1305.1462)

Heavy to heavy meson semileptonic decay form factors:

- $B \rightarrow Dl\nu \ (b \rightarrow c)$ form factors at zero recoil. (arXiv:1503.07237, arXiv:1505.03925)
- $B
 ightarrow D^* l
 u$ (b
 ightarrow c) form factors at nonzero recoil. (arXiv:1403.0635)

Light to light meson semileptonic decay form factors:

• $K \rightarrow \pi l \nu \ (s \rightarrow u)$ form factors. (arXiv:1312.1228)

Summary

- The form factors in the semileptonic *B*, *D* and *K*-meson decay processes can be computed by lattice-QCD accurately.
- The latest form factors calculated from lattice-QCD enable us to calculated Standard Model predictions more accurately.
- More results on the these semileptonic decay form factors from improved lattice actions will be available in the next few years.

Backup slides

Backup Slides

Ran Zhou (Fermilab)

 ▶
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

Standard Model predictions

Theoretical prediction of dB/dq^2 in high q^2 region:

$$\frac{dB}{dq^2} = \frac{G_F^2 \alpha^2 |V_{tb} V_{td}^*|^2}{2^7 \pi^5} |\mathbf{k}| \beta_+ \left\{ \frac{2}{3} |\mathbf{k}|^2 \beta_+^2 \left| C_{10}^{\text{eff}} f_+(q^2) \right|^2 + \frac{m_I^2 (M_B^2 - M_K^2)^2}{q^2 M_B^2} \left| C_{10}^{\text{eff}} f_0(q^2) \right|^2 + |\mathbf{k}|^2 \left[1 - \frac{1}{3} \beta_+^2 \right] \left| C_9^{\text{eff}} f_+(q^2) + 2C_7^{\text{eff}} \frac{m_b}{M_B + M_K} f_T(q^2) \right|^2 \right\}, \quad (4)$$

where G_F , α , and V_{tq} are the Fermi constant, the (QED) fine structure constant, and CKM matrix elements, respectively, $|\mathbf{k}| = \sqrt{E_K^2 - M_K^2}$ is the kaon momentum in the *B*-meson rest frame, and $\beta_+^2 = 1 - 4m_l^2/q^2$, with m_l the lepton mass.