

CP violation in $B^0_{(s)} - \overline{B}^0_{(s)}$ mixing with semileptonic decays at LHCb Matthew Kelsey on behalf of the LHCb collaboration

Heavy Quarks and Leptons 2016

Outline

Introduction CPV in B⁰ mixing (a_{sl}^d)²⁰¹⁵ CPV in B_s mixing (a_{sl}^s)

New preliminary result!

CPV in mixing

• Neutral B mesons: $|B_{H,L}^0\rangle = p|B_q^0\rangle \pm q|\overline{B}_q^0\rangle$ \rightarrow mass eigenstates \neq flavor eigenstates

• CP violation in mixing: $P(B \to \overline{B}) \neq P(\overline{B} \to B)$

 $\rightarrow |q/p| \neq 1$

The semileptonic CP asymmetry

- CP asymmetry in mixing: $P(B \to \overline{B}) \neq P(\overline{B} \to B)$ $a_{sl}^q = \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to \overline{f})}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to \overline{f})} = \frac{1 - (q/p)^4}{1 + (q/p)^4} \approx \frac{\Delta\Gamma_q}{\Delta m_q} tan(\phi_{12}^q) \quad (q=d,s)$
- Inclusive semileptonic final state (flavor-specific)
- Two neutral B mesons $\rightarrow B^0: a_{sl}^d$ $\rightarrow B_s^0: a_{sl}^s$ • From SM: $a_{sl}^d = (-4.7 \pm 0.6) \times 10^{-4}$ $a_{sl}^s = (2.22 \pm 0.27) \times 10^{-5}$ Tiny! Possible enhancement from NP

Artuso, Borissov, Lenz [arXiv:1511.09466]

Measuring a_{sl} at LHCb

• Our measured quantity:

$$\rightarrow \text{Untagged (raw) charge asymmetry (ex. for B_s)}$$

$$A_{raw} = \frac{N(D_s^- \mu^+) - N(D_s^+ \mu^-)}{N(D_s^- \mu^+) + N(D_s^+ \mu^-)} = \frac{a_{sl}^s}{2} - \frac{a_{sl}^s}{2} \frac{\cos(\Delta m_s t)}{\cosh(\Delta \Gamma_s t/2)}$$

...But there's more

Production asymmetry

Detection asymmetries

Measuring a_{sl} at LHCb

Detection asymmetries

- Large experimental challenge
- Assessed in data using calibration samples

LHCb, PRL 114 (2015) 041601

a_{sl} in B⁰

- 3fb^{-1} taken at 7 TeV(2011) and 8 TeV(2012)
- $B^0 \to D^{(*)-} \mu^+ \nu X$ semileptonic decays
- 2D fit in $D^{(*)+}$ mass and B decay time

 \rightarrow Correction for missing v

• A_P and a_{sl}^d disentangled in A_{raw}

Results

The a_{sl} landscape so far

 $a_{sl}^d = (-0.02 \pm 0.19(stat) \pm 0.30(syst)) \times 10^{-2}$

 $a_{sl}^s = (-0.06 \pm 0.50(stat) \pm 0.36(syst)) \times 10^{-2}$ (1fb⁻¹)

LHCb, PRL 114, 041601 (2015) LHCb, PLB 728C (2014) 607 D0, Phys. Rev. D 86, 072009 D0, Phys. Rev. Lett. 105, 081801 D0, Phys. Rev. D 82, 012003 BaBar, Phys. Rev. Lett. 111, 101802 BaBar, arXiv:1411.1842 Belle, Phys. Rev. D 73, 112002

New preliminary result using full Run-I dataset (3fb⁻¹) LHCb-PAPER-2016-013 (To be submitted to PRL)

$a_{sl} in B_s^0$

• Inclusive $B_s^0 \to D_s^- \mu^+ \nu X$ decays

• Untagged, time integrated analysis

Integral O(10⁻³) due to rapid B_s oscillations

$$A_{raw} \approx A_D + \frac{a_{sl}^s}{2} + (A_P - \frac{a_{sl}^s}{2}) \int cos(\Delta m_s t) dt$$

$$A_P O(10^{-2})$$

• Adding backgrounds: $\frac{a_{sl}^s}{2} = \frac{1}{1 - f_{bkg}} (A_{raw} - A_D - f_{bkg}A_{bkg})$

D_s candidates

Raw yields

- Select $D_s\mu$, fit D_s mass peak
- Directly produced D_s removed

 $\rightarrow D_s$ impact parameter cut

• Fit contains peaking backgrounds

M. Kelsey HQL 2016

Peaking backgrounds

• Peaking backgrounds dilute and bias measurement

$$\frac{a_{sl}^s}{2} = \frac{1}{1 - f_{bkg}} (A_{raw} - A_D - f_{bkg} A_{bkg})$$

- \mathbf{f}_{bkg} from BRs and efficiency
- A_{bkg} mostly from production asymmetries

LHCb, JHEP 09 177 (2014) LHCb, PRL 114, 041601 (2015) LHCb, Chin.Phys.C 40, 1, 011001(2016)

$$\begin{array}{l} B^+ \to D^{(*)0} D_s^{(*)+} X \\ B^0 \to D^0 D_s^{(*)+} X \\ B^0 \to D^- D_s^{(*)+} X \\ B_s^0 \to D_s^{(*)-} D_s^{(*)+} \\ A_b^0 \to A_c^+ D_s^{(*)+} X \\ \hline B^- \to D_s^+ K^- \mu^- \nu X \\ \hline B^0 \to D_s^+ K_{\rm S}^0 \mu^- \nu X \end{array} \right[$$

"double-D"

"DsK"

$$f_{bkg} = (18.4 \pm 6.0)\%$$

$$\Sigma_i f^i_{bkg} A^i_{bkg} = f_{bkg} A_{bkg} = (-0.023 \pm 0.031)\%$$

Tracking asymmetry

- Largest systematic in previous analysis
- Combine two methods
 - Tag-and-probe $J/\Psi \rightarrow \mu\mu$
 - Partially/fully reconstructed $D^{*+} \rightarrow D^{0} (\rightarrow K\pi\pi\pi)\pi$
- Simulation studies

PID and trigger asymmetries

Results

	Source	Value	Stat. uncert.	Syst. uncert.	
	$A_{\rm raw}$	0.11	0.09	0.02	
$A_{\text{track}}(K^+K^-)$		-0.01	0.00	0.03	
$A_{\text{track}}(\pi^-\mu^+)$		-0.01	0.05	0.04	
$A_{\rm PID}$		0.01	0.02	0.03	
$A_{\rm trig}({\rm hardware})$		-0.03	0.02	0.02	
$A_{\rm trig}({\rm software})$		0.00	0.01	0.02	
$f_{\rm bkg} A_{\rm bkg}$		-0.02	_	0.03	
	$f_{\rm bkg}$	_	_	0.06	
	Total $a_{\rm sl}^s$	0.39	0.26	0.20 %	Preliminary

The new a_{sl} landscape

• Measured a_{sl}^d and a_{sl}^s with the full Run-I LHCb dataset

- Most precise value of CPV in $B_{(s)}$ mixing to date
- Results compatible with SM prediction

Thank you!