Tellurium Double Beta Decay with a Liquid Scintillator

Szymon Manecki, Queen's University, Heavy Quarks and Leptons at Virginia Tech, May 27th, 2016

SNO+ Physics Goals

Neutrinoless Double Beta Decay of 130Te

- Low Energy Solar Neutrinos
- Reactor Antineutrinos
- Geo-Neutrinos
- Supernova-v
- Three phases:
 - Water phase
 - Liquid scintillator phase
 - Te-loaded liquid scintillator

SNOLAB Facility

SNOLAB Facility

- Depth = 2070 m (6000 m.w.e.)
- 60 muons /day in SNO+
- 10,000 sq ft Class-2000 clean room

SNO+ Detector

78ot of liquid scintillator (LAB+PPO)

PSUP = PMT Support Structure ~9500 PMT, 54% Coverage

Acrylic Vessel (AV) Φ=12m, thickness=5cm

Light water (H2O) shielding - 1700t internal - 5300t external

Urylon Liner/Radon Seal

Norite Rock

Low cost High flash point: 130°C Low toxicity

Light attenuation length> 20 m at 420 nm

High light yield (~10,000 photons/MeV)

Smallest scattering of all scintillating solvents investigated

¹³^oTe Double Beta Decay

- Are neutrinos their own anti-particles?
 - $2\nu\beta\beta$ (Dirac) (A, Z) \rightarrow (A, Z + 2) + $2e^{-}$ + $2\nu_{e}$ ~ 10^{18} - 10^{21} years
 - $0\nu\beta\beta$ (Majorana) (A, Z) \rightarrow (A, Z + 2) + 2e⁻ > 10²⁵ years
 - With the Mass Mechanism:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} \cdot |M^{0\nu}|^2 \cdot \langle m_{\beta\beta} \rangle$$
$$\langle m_{\beta\beta} \rangle^2 = |\sum_i U_{ei}^2 m_{\nu i}|^2$$

D.B.D. experiments need good energy resolution, low backgrounds, and large amounts of isotope.

¹³⁰Te Double Beta Decay

Selection of the best isotope for SNO+

- High natural abundance (34%)
- $T_{1/2}^{2nbb} = 7 \times 10^{20}$ years one of the longest $2\nu\beta\beta$
- High $Q_{\beta\beta} = 2526.97 \text{keV}$
- High light yield
- Successfully loaded in the liquid scintillator

High Q value reduces backgrounds and increases the phase space & decay rate. Large abundance makes the experiment cheaper.

Scintillator Purification Plant

Scintillator Purification Plant

Multi-stage distillation

- Dual-stream PPO distillation
- Removes heavy metals
- Improves UV transparency
- N₂ / steam stripping
 Removes Rn, Kr, Ar, O₂
- Water extraction
 - Removes Ra, K, Bi

- Metal scavenging
 - Removes Bi, Pb
- Microfiltration
 - Removes dust

- Target Levels
 - ⁸⁵Kr: 10⁻²⁵ g/g
 - 4°K: 10⁻¹⁸ g/g
 - ³⁹Ar: 10⁻²⁴g/g
 - U: 10⁻¹⁷ g/g
 - Th: 10⁻¹⁸ g/g

Telluric Acid Production

Te extracted from mine (depth ~ 300 m) in April 2014

- Visit to the production site prior to start of processing
- QA/QC tests on samples from each barrel before approval to sent to SNOLAB

1.8 tonnes of Te(OH)₆, corresponding to ~1 tonne Te, or ~0.13% Te loading

Shipped to SNOLAB (January 7th 2015)

- Transported underground on January 19th 2015
- Testing one sample from one of the barrels to crosscheck previous results

Telluric Acid Purification

- The purification technique relies on solubility of TeA in water based on pH
 - Te(OH)₆ ↔ Te(OH)₅O⁻ + H⁺
 in-soluble soluble
 - Insoluble contamination
 - Dissolve in water, and filter
 - Soluble contamination

- Force TeA to recrystallize by adding Nitric Acid, let it precipitate out, and drain the "dirty" liquid
- The process can be made tellurium selective

Telluric Acid Purification

• 0.5% Tellurium Target levels:

- 1.3x10⁻¹⁵ g/g in ²³⁸U (3x10⁻⁸ Bq/kg)
- 5x10⁻¹⁶g/g in ²³²Th (1.2x10⁻⁹ Bq/kg)
 - (raw Te ~10⁻¹¹ g/g U/Th, 10⁻⁴ Bq/kg)

Te contamination in U/Th cosmogenically activated

- ⁶⁰Co, ¹¹⁰mAg, ¹²⁶Sn, ⁸⁸Zr, ⁸⁸Y, ¹²⁴Sb
 - Rejection needed 10⁴-10⁵

Isotope	$t_{exp} = 1 \text{ yr}$
²² Na	15309
²⁶ Al	0.048
^{42}K	565
^{44}Sc	102
⁴⁶ Sc	43568
⁵⁶ Co	2629
⁵⁸ Co	25194
⁶⁰ Co	6906
⁶⁸ Ga	37343
⁸² Rb	18047
⁸⁴ Rb	11850
⁸⁸ Y	390620
⁹⁰ Y	823
102 Rh	276189
102m Rh	133848
¹⁰⁶ Rh	1534
110m Ag	69643
¹¹⁰ Ag	939
^{124}Sb	3101138
$^{126m}\mathrm{Sb}$	240
¹²⁶ Sb	358996

10kg pilot-scale plant operated successfully Final design ~200 kg TeA/batch

ονββ LS Requirements

- Reach high tellurium concentration
 0.5% ¹³⁰Te in 780 tonnes of scintillator
- Preserve good optics of the cocktail
 Transparency, Scattering, Light Yield
- Maintain high purity of the scintillator
 - U/Th reduction factor
 - Cosmogenic activation

The Te-Diol Complex

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol based Te complex ("TeBD"):

The Te-Diol Complex

- Tellurium loading in Linear Alkyl Benzene
 - Through direct mixing in of an organometallic complex of Tellurium
- Butane-Diol purified through distillation
 Butane-Diol based Te complex ("TeBD"):

Irreducible Backgrounds

Internal Radioactivity Traces of radioisotopes (U/Th chain, ⁴°K, etc) in the scintillator

External Gammas

from decays in the acrylic, water, PMTs, etc.

Fast Neutron from external muons

Cosmogenics

Neutrons and radionuclides from spallation and hadronic showers

Cosmic Ray Muons

Backgrounds Budget

$ov\beta\beta$ Sensitivity with Te-Diol

1.3 tonnes of ¹³⁰Te in LAB (at 0.5% ^{nat-}Te)

- [-0.5; +1.5] σ around Q_{ββ}
- 400 NHits/MeV (~4% ΔE)
- Fiducial Volume: 20% total

(z) sensitivity

ovββ Sensitivity in Phase II

Improve sensitivity by improving

- Light yield and going to higher loading
 - Improve current technique
- Higher QE PMTs
 - Improved concentrators
 - Coverage to 80%
- Goal: 3% nat. Te loading
 - ~ 8 tonnes ¹³⁰Te
 - Higher QE PMTS
 - T_{1/2} onbb ~ 10²⁷ yr

600

500

400

SNO+ Preliminary

ovββ Sensitivity in Phase II

SNO+ Schedule

2016

- Scintillator plant commissioning
- Scintillator fill
 - Solar neutrino phase (short)
 - Evaluation of backgrounds for ovββ
- Commissioning of the Tellurium plant(s)
- 2017/2018
 - Tellurium loading
 - Begin ovββ phase

SNO+ Collaboration

Discovery Flow

Calibration Sources

0.1

(sum)

(sum)

6.1

(sum)

7.7

2.2

4.9

~7.5

Optical Calibration

Light emitted from the support structure from 92 fibres installed between PMTs. Each gives 10E³-10E⁵ photons/pulse.

Remaining Backgrounds

- External (PMT) gammas from (²¹⁴Bi, ²⁰⁸Tl)
 - 3.5 m fiducial volume (20% AV)
 - Can use residuals likelihood
- External (AV) gammas
 Multi-site rejection (e⁻ γ)
- Po (α, n) on ¹³C
 n + p -> d + γ (2.2 MeV)

ovββ Isotope Selection

- In principle, isotopes with the best Nuclear Factor of Merit should be favored
- A surprising inverse correlation has been observed between phase space and the square of the nuclear matrix element

ovββ Isotope Selection

