

Charm Decays and CKM Matrix Measurements at BESII

Jianming Bian University of Minnesota 05-27-2016

HQL2016, Center for Neutrino Physics, Virginia Tech

CKM matrix and D decays

Quark mass eigenstates are not their weak eigenstates: Quarkmixing described by unitary CKM matrix in the Standard Model (SM). The CKM matrix elements are fundamental parameters of the SM.

The magnitude of V_{cd} and V_{cs} can be extracted from semileptonic and leptonic D and D_s decays, using theoretical knowledge of the form factors.

Unitarity Triangle

The unitarity of the CKM matrix can be represented by a triangle in a complex plane.

 γ/ϕ_3 in the unitarity triangle can be directly measured through the interference of $B^- \rightarrow D^0(\overline{D}^0)K^- \rightarrow$ same final states, in which strong phase difference between D^0 and \overline{D}^0 can be determined from *D* decays

Beijing Electron Positron Collider II (BEPCII)

Linac

The injector, a 202 m-long electron position linear accelerator that can accelerate the electrons and positrons to 1.3 GeV.

BESIII Beijing Spectrometer III, generalpurpose detector for BEPCII.

Two storage rings with a circumference of 237.5 m (one for electrons and one for positrons)

The BESIII Detector

Samples of Charm decays

Generate ψ " and D pairs at rest. Beam energy can be used to constrain kinematics of D decay final states, providing clean singlely/doublely tagged D samples to study (semi-)leptonic decays and hadron decays.

D leptonic and semileptonic decays

D leptonic and semi-lepton decay are ideal window to probe for weak and strong effects

 $\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{\ell}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2} \frac{d\Gamma}{dq^{2}} = X \frac{G_{F}^{2} |V_{cd(s)}|^{2}}{24\pi^{3}} p^{3} |f_{+}(q^{2})|^{2}$

- In CKM measurements, the uncertainty is dominated by the uncertainty from $f_{B(S)}$ and $f_{+}^{B \rightarrow \pi}(q^2)$ of *B* meson calculated in LQCD.
- Precision measurement of (semi-)leptonic *D* decay rate can be used to validate $f_{D(S)^+}$ and $f_+^{D \to K(\pi)}(q^2)$ calculated in LQCD, and then improve LQCD calculation of $f_{B(S)}$ and $f_+^{B \to \pi}(q^2)$ for B meson.
- Recent improved LQCD calculation on $f_{D(S)+}(0.5\%)$ and $f_{+}^{D\to K(\pi)}(q^2)$ (1.7%, 4.4%) provide good chance to constrain the CKM matrix element $|V_{cs(d)}|$, test the unitarity of CKM and search for NP.

Measurement of B[D⁺ \rightarrow $\mu^+\nu$], f_{D+} and |V_{cd}|

Comparisons of B[D⁺ \rightarrow $\mu^+\nu$] and f_{D+}

- BESIII achieves the best experimental precision
- Some tension between experiment results and LQCD calculations

Comparisons of f_{D+}, f_{Ds+} and f_{D+}:f_{Ds+}

The plots taken from Gang's talk at CMK2014

	Experiments	Femilab Lattice+MILC (2014)		HPQCD (2012)	
	Averaged	Expected	Δ	Expected	Δ
f _{D+} (MeV)	203.9±4.7	212.6±0.4 ^{+1.0} -1.2	<mark>1.8</mark> σ	208.3±3.4	<mark>0.8</mark> σ
f _{Ds+} (MeV)	256.9±4.4	249.0±0.3 ^{+1.1} -1.5	1.7σ	246.0±3.6	<mark>1.4</mark> σ
f _{D+} :f _{Ds+}	1.260±0.036	1.1712±0.0010 ^{+0.0029} -0.0032	2.5 σ	1.187±0.013	<mark>1.9</mark> σ

- Precision of the LQCD calculation of f_{D+} , f_{DS+} , f_{D+} : f_{DS+} reach ~0.5%
- The experiments have worse precision
- The experimental measured and the LQCD calculation different by $\sim 2\sigma$ for f_{D+} : f_{DS+}
- Need to improve experimental measurements with larger data samples

Measurement of $B[D^+ \rightarrow K(\pi)e\nu]$

Measurement of $f_+^{K(\pi)}(q^2)$

Fit yields vs. q² with different FF parameterization

Projection on FF with $|V_{cd(s)}|$ from CKMfiter

Comparisons of measured FF with LQCD predictions

Comparisons of FF

BESIII experiment achieved most precise measurement The experimental accuracy is better than that of theoretical predictions

Extraction of $|V_{cd}|$ and $|V_{cs}|$

Fits to $d\Gamma[D^+ \rightarrow K^0(\pi^0)e^+v]$

Comparisons of $f_+^{K(\pi)}(0)$

Current Status of the Measurement of the CKM Unitarity

Differences would imply new physics

$$\phi_1/\beta = \left(21.85^{+0.68}_{-0.67}\right)^{\circ}$$
$$\phi_2/\alpha = \left(87.6^{+3.5}_{-3.3}\right)^{\circ}$$
$$\phi_3/\gamma = \left(73.2^{+6.3}_{-7.0}\right)^{\circ}$$

2015 CKMfitter (Direct Measurements)

$$\phi_{1}/\beta = \left(22.62^{+0.44}_{-0.42}\right)^{\circ}$$
$$\phi_{2}/\alpha = \left(90.4^{+2.0}_{-1.0}\right)^{\circ}$$
$$\phi_{3}/\gamma = \left(67.01^{+0.88}_{-1.99}\right)^{\circ}$$

2015 CKMfitter (Global Fits)

Directly Measuring γ/ϕ_3 Through $B^- \rightarrow D^0(\overline{D}^0)K^-$

Total Decay Rate $\Gamma(B^- \to f(D^0)K^-) = A_B^2 A_f^2 (r_D^2 + r_B^2 + 2r_D r_B \cos(\delta_B + \delta_D - \phi_3))$

Status of Direct Measurement of γ/ϕ_3

Example of ϕ_3 measurements from GGSZ method

Belle Model-Dependent Dalitz [Phys. Rev. D 81, 112002 (2010)] $78.4^{+10.8}_{-11.6}(stat) \pm 3.6(syst) \pm 8.9(Model)$ Belle Model-Independent Dalitz [Phys. Rev. D 85, 112014 (2012)] $77.3^{+15.1}_{-14.9}(stat) \pm 4.2(syst) \pm 4.3(c_i/s_i)$

> Currently statistically limited, but soon systematically limited

Combine methods measurement

Strong phase from: CLEO-c, PRD 82 112006 (2010)

$$\phi_{3} = \begin{cases} \left(69^{+17}_{-16}\right)^{\circ} BABAR(2013) \\ \left(68^{+15}_{-14}\right)^{\circ} Belle(2013) \\ \left(70.9^{+7.1}_{-8.5}\right)^{\circ} LHCb (2016) \end{cases}$$

γ/ϕ_3 Fit Through GGSZ Method

Due to both amplitude and having only charged tracks, $K_s \pi^+ \pi^-$ is the preferred final state for this method.

 T_i , r_B , δ_B are measured at B-Factories

 c_i and s_i can be found through $K_s \pi^+ \pi^-$ Analysis at BESIII

Binned decay rate:

$$\Gamma(B^{\pm} \to D(K_{s}\pi^{+}\pi^{-})K^{\pm})_{i} = T_{i} + r_{B}^{2}T_{-i} + 2r_{B}\sqrt{T_{i}T_{-i}}\cos(\delta_{B} \pm \phi_{3} - \Delta\delta_{D})$$

= $T_{i} + r_{B}^{2}T_{-i} + 2r_{B}\sqrt{T_{i}T_{-i}}\{c_{i}\cos(\delta_{B} \pm \phi_{3}) + s_{i}\sin(\delta_{B} \pm \phi_{3})\}$

Constraining c_i and s_i

Only c_i , s_i from $K_s \pi^+ \pi^-$ is used to calculate ϕ_3 .

However adding in $D^0 \rightarrow K_L \pi^+ \pi^-$ we can calculate c'_i, s'_i and use how they relate to c_i, s_i to further constrain our results in a Global fit.

$K_s^0 \pi^+ \pi$ Dalitz Plots vs. CP Modes

Comparison to Model/Previous Measurement

Summary

- With 2.93 fb⁻¹ data taken at 3.773 GeV BESIII has measured
 - Precise D decay constant and form factors in (semi-)leptonic D decays
 - Accurate CKM element $|V_{cs(d)}|$, and *D* strong phase parameters for γ/ϕ_3 determination
- 3 fb⁻¹ data at 4.18 GeV is being taken in 2016, will perform CKM measurements with D_s decays.

Equation for $K_s^0 \pi^+ \pi^-$ Dalitz Plots vs. CP Modes

For the CP tag modes, one can show that the total bin yields are related to c_i by

$$M_i^{\pm} = \frac{S_{\pm}}{2S_f} \left(K_i \pm 2c_i \sqrt{K_i K_{-i}} + K_{-i} \right)$$

 $M_i^+(M_i^-)$ yields in each bin of Dalitz plot for CP even(odd) modes. $S_+(S_-)$ number of single tags for CP even(odd) modes. S_f number of single tags for flavor modes. $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes.

Single Tag modes

Type	Tag List
Pseudo-Flavored	$K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{+}\pi^{-}$
S^+	$K^+K^-, \pi^+\pi^-, K_S\pi^0\pi^0, K_L\pi^0$
S^{-}	$K_S\pi^0, K_S\eta(\to\gamma\gamma), K_S\eta(\to\pi^+\pi^-\pi^0), K_S\omega, K_S\eta'_{26}$

Equation for $K_s^0 \pi^+ \pi$ vs. $K_s^0 \pi^+ \pi$

Using $D^0 \rightarrow K_s \pi^+ \pi^- vs \ \overline{D}{}^0 \rightarrow K_s \pi^+ \pi^-$ we can calculate both c_i and s_i :

$$M_{i,j} = \frac{N_{D,\overline{D}}}{2S_f^2} \left(K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j) \right)$$

 $M_{i,j}$ yields in bin i of first Dalitz plot and bin j of second Dalitz plot. S_f number of single tags for flavor modes. $N_{D,\overline{D}}$ total number of $D^0 \overline{D}{}^0$ events. $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes.

Mirroring the bins over the x=y line in the Dalitz plot, we note the following points:

- $M_{i,j} = M_{-i,-j}$
- $M_{i,-j} = M_{-i,j}$
- $M_{i,j} \neq M_{-i,j}$

Symmetric Matrix because the order which tag is i or j

•
$$M_{i,j} = M_{j,i}$$

Binning of Dalitz Plot

Result of splitting the Dalitz phase space into 8 equally spaced phase bins based on the BaBar 2008 Model.

Starting with the equally spaced bins, bins are adjusted to optimize the sensitivity to ϕ_3 . A secondary adjustment smooths binned areas smaller than detector resolution.

Similar to the "optimal binning" except the expected background is taken into account before optimizing for ϕ_3 sensitivity.

Source: CLEO Collaboration, Physical Review D, vol 82., pp. 112006 - 112035

Likelihood of the Fit for c_i and s_i

The total fit maximizes the likelihood of

$$-2\log \mathcal{L} = -2\sum_{i} \log P(M_{i}^{\pm}, < M_{i}^{\pm} >)_{(CP,K_{S}^{0}\pi^{+}\pi^{-})}$$
$$-2\sum_{i} \log P(M_{i}^{\prime\pm}, < M_{i}^{\prime\pm} >)_{(CP,K_{L}^{0}\pi^{+}\pi^{-})}$$
$$-2\sum_{i,j} \log P(M_{i,j}^{\pm}, < M_{i,j}^{\pm} >)_{(K_{S}^{0}\pi^{+}\pi^{-},K_{S}^{0}\pi^{+}\pi^{-})}$$
$$-2\sum_{i,j} \log P(M_{i,j}^{\prime\pm}, < M_{i,j}^{\prime\pm} >)_{(K_{S}^{0}\pi^{+}\pi^{-},K_{L}^{0}\pi^{+}\pi^{-})}$$

P is Poisson probability of finding M events with the expected number <M>

 $K_s^0 \pi^+ \pi$ vs. $K_s^0 \pi^+ \pi^-$

- This is the most statistically limited part of the analysis.
- Further increase statistics by reconstructing a missing $\boldsymbol{\pi}.$

Impact on γ/ϕ_3

Toy MC ϕ_3 estimate ϕ_3

- BESIII :	RMS 2.165
- CLEO-c :	RMS 3.927

Toy MC estimates the effects on ϕ_3 by letting c_i , s_i vary by a Gaussian of their given uncertainty.

Width of variation due to BESIII uncertainty is 55% the previous measurement.

We are still statistically limited with 3 fb⁻¹.

Future measurements with 10 fb⁻¹ and 20 fb⁻¹ reduce the uncertainty to 33% and 27% the CLEO-c measurement, respectively.