Determination of V_{cb} and V_{ub} From Semileptonic Decays

Benjamín Grinstein

UCSD

May 27, 2016

Benjamín Grinstein Determination of V_{cb} and V_{ub}

- Decay rates of B and Λ_b are proportional to
 - $|V_{cb}|^2$ in decays $b \to c$
 - $|V_{ub}|^2$ in decays $b \to u$
- \bullet Single *b*-quark production rate also, but not as clean
- Semileptonic decays $(b \to (c, u) \ell \nu) \Rightarrow$ best theory control
- Empirically $|V_{cb}|^2 \sim 10^2 |V_{ub}|^2$ $\Rightarrow b \rightarrow u\ell\nu$ "hides" under $b \rightarrow c\ell\nu$
- Concentrate on B decays; for Λ_b see talk by Svende Braun

Exclusive:

• $\Gamma(B \to D \mu \nu), \, \Gamma(B \to D^* \mu \nu)$

- Need form factors: HQET, lattice, z-expansion
- Large fractions: in small-velocity (SV) limit semileptonic saturated by $B \to D\mu\nu + B \to D^*\mu\nu$

(Shifman & Voloshin, SJNP 47(1988)511; Boyd et al PRD54(1996)2081)

•
$$\Gamma(B \to \pi \mu \nu), \Gamma(B \to \rho \mu \nu), \dots$$

• $\Gamma(B \to D \mu \nu), \Gamma(B \to D^* \mu \nu)$

- $\Gamma(D \to D \mu \nu), \Gamma(D \to D^{-} \mu \nu)$
 - Need form factors: lattice, z-expansion
 - Small fractions

Inclusive:

- $\Gamma(B \to X_c \ell \nu) \equiv \Gamma(B \to D \mu \nu) + \Gamma(B \to D^* \mu \nu) + \Gamma(B \to D \pi \ell \nu) + \cdots$
- Quark-hadron duality: $\Gamma(B \to X_c \ell \nu) \approx \Gamma(b \to c \ell \nu)$
 - (almost) from 1st principles
 - integration over (some) phase space
 - holds for moments; characterize non-perturb effects
 - all analytic

• u hides under a

Benjamín Grinstein

Determination of V_{cb} and V_{ub}

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

э

Exclusive:

- $\Gamma(B \to D \mu \nu), \, \Gamma(B \to D^* \mu \nu)$
 - $\bullet\,$ Need form factors: HQET, lattice, z-expansion
 - Large fractions: in small-velocity (SV) limit semileptonic saturated by $B \to D\mu\nu + B \to D^*\mu\nu$

(Shifman & Voloshin, SJNP 47(1988)511; Boyd et al PRD54(1996)2081)

- $\Gamma(B \to \pi \mu \nu), \, \Gamma(B \to \rho \mu \nu), \dots$
 - $\Gamma(B \to D\mu\nu), \, \Gamma(B \to D^*\mu\nu)$
 - Need form factors: lattice, z-expansion
 - Small fractions

Inclusive:

- $\Gamma(B \to X_c \ell \nu) \equiv \Gamma(B \to D \mu \nu) + \Gamma(B \to D^* \mu \nu) + \Gamma(B \to D \pi \ell \nu) + \cdots$
- Quark-hadron duality: $\Gamma(B \to X_c \ell \nu) \approx \Gamma(b \to c \ell \nu)$
 - (almost) from 1st principles
 - integration over (some) phase space
 - holds for moments; characterize non-perturb effects
 - all analytic

• u hides under a

Benjamín Grinstein

Determination of V_{cb} and V_{ub}

Exclusive:

- $\Gamma(B \to D \mu \nu), \, \Gamma(B \to D^* \mu \nu)$
 - $\bullet\,$ Need form factors: HQET, lattice, z-expansion
 - Large fractions: in small-velocity (SV) limit semileptonic saturated by $B \to D\mu\nu + B \to D^*\mu\nu$

 (Shifman & Voloshin, SJNP 47
(1988) 511; Boyd $et\ al\ \mathrm{PRD54}(1996)2081)$

- $\Gamma(B \to \pi \mu \nu), \, \Gamma(B \to \rho \mu \nu), \dots$
 - $\Gamma(B \to D\mu\nu), \, \Gamma(B \to D^*\mu\nu)$
 - Need form factors: lattice, z-expansion
 - Small fractions

Inclusive:

- $\Gamma(B \to X_c \ell \nu) \equiv \Gamma(B \to D \mu \nu) + \Gamma(B \to D^* \mu \nu) + \Gamma(B \to D \pi \ell \nu) + \cdots$
- Quark-hadron duality: $\Gamma(B \to X_c \ell \nu) \approx \Gamma(b \to c \ell \nu)$
 - (almost) from 1st principles
 - integration over (some) phase space
 - holds for moments; characterize non-perturb effects
 - all analytic

• u hides under a

Benjamín Grinstein

Determination of V_{cb} and V_{ub}

Exclusive:

- $\Gamma(B \to D\mu\nu), \, \Gamma(B \to D^*\mu\nu)$
 - $\bullet\,$ Need form factors: HQET, lattice, z-expansion
 - Large fractions: in small-velocity (SV) limit semileptonic saturated by $B \to D\mu\nu + B \to D^*\mu\nu$

(Shifman & Voloshin, SJNP 47(1988)511; Boyd et al PRD54(1996)2081)

•
$$\Gamma(B \to \pi \mu \nu), \Gamma(B \to \rho \mu \nu), \dots$$

- $\Gamma(B \to D\mu\nu), \, \Gamma(B \to D^*\mu\nu)$
 - $\bullet\,$ Need form factors: lattice, z-expansion
 - Small fractions

Inclusive:

- $\Gamma(B \to X_c \ell \nu) \equiv \Gamma(B \to D \mu \nu) + \Gamma(B \to D^* \mu \nu) + \Gamma(B \to D \pi \ell \nu) + \cdots$
- Quark-hadron duality: $\Gamma(B \to X_c \ell \nu) \approx \Gamma(b \to c \ell \nu)$
 - (almost) from 1st principles
 - integration over (some) phase space
 - holds for moments; characterize non-perturb effects
 - all analytic

• u hides under a

Benjamín Grinstein

Determination of V_{cb} and V_{ub}

Exclusive:

- $\Gamma(B \to D \mu \nu), \, \Gamma(B \to D^* \mu \nu)$
 - $\bullet\,$ Need form factors: HQET, lattice, z-expansion
 - Large fractions: in small-velocity (SV) limit semileptonic saturated by $B \to D\mu\nu + B \to D^*\mu\nu$

(Shifman & Voloshin, SJNP 47(1988)511; Boyd et al PRD54(1996)2081)

•
$$\Gamma(B \to \pi \mu \nu), \ \Gamma(B \to \rho \mu \nu), \dots$$

- $\Gamma(B \to D\mu\nu), \, \Gamma(B \to D^*\mu\nu)$
 - $\bullet\,$ Need form factors: lattice, z-expansion
 - Small fractions

Inclusive:

- $\Gamma(B \to X_c \ell \nu) \equiv \Gamma(B \to D \mu \nu) + \Gamma(B \to D^* \mu \nu) + \Gamma(B \to D \pi \ell \nu) + \cdots$
- Quark-hadron duality: $\Gamma(B \to X_c \ell \nu) \approx \Gamma(b \to c \ell \nu)$
 - (almost) from 1st principles
 - integration over (some) phase space
 - holds for moments; characterize non-perturb effects
 - all analytic

• u hides under a

Benjamín Grinstein

Determination of V_{cb} and V_{ub}

Exclusive:

- $\Gamma(B \to D \mu \nu), \, \Gamma(B \to D^* \mu \nu)$
 - $\bullet\,$ Need form factors: HQET, lattice, z-expansion
 - Large fractions: in small-velocity (SV) limit semileptonic saturated by $B \to D\mu\nu + B \to D^*\mu\nu$

(Shifman & Voloshin, SJNP 47(1988)511; Boyd et al $\mathrm{PRD54}(1996)2081)$

•
$$\Gamma(B \to \pi \mu \nu), \Gamma(B \to \rho \mu \nu), \dots$$

- $\Gamma(B \to D\mu\nu), \, \Gamma(B \to D^*\mu\nu)$
 - $\bullet\,$ Need form factors: lattice, z-expansion
 - Small fractions

Inclusive:

- $\Gamma(B \to X_c \ell \nu) \equiv \Gamma(B \to D \mu \nu) + \Gamma(B \to D^* \mu \nu) + \Gamma(B \to D \pi \ell \nu) + \cdots$
- Quark-hadron duality: $\Gamma(B \to X_c \ell \nu) \approx \Gamma(b \to c \ell \nu)$
 - (almost) from 1st principles
 - integration over (some) phase space
 - holds for moments; characterize non-perturb effects
 - all analytic

• u hides under c

Benjamín Grinstein

Determination of V_{cb} and V_{ub}

Exclusive:

- $\Gamma(B \to D \mu \nu), \, \Gamma(B \to D^* \mu \nu)$
 - $\bullet\,$ Need form factors: HQET, lattice, z-expansion
 - Large fractions: in small-velocity (SV) limit semileptonic saturated by $B \to D\mu\nu + B \to D^*\mu\nu$

(Shifman & Voloshin, SJNP 47(1988)511; Boyd et al PRD54(1996)2081)

•
$$\Gamma(B \to \pi \mu \nu), \Gamma(B \to \rho \mu \nu), \dots$$

- $\Gamma(B \to D\mu\nu), \, \Gamma(B \to D^*\mu\nu)$
 - $\bullet\,$ Need form factors: lattice, z-expansion
 - Small fractions

Inclusive:

- $\Gamma(B \to X_c \ell \nu) \equiv \Gamma(B \to D \mu \nu) + \Gamma(B \to D^* \mu \nu) + \Gamma(B \to D \pi \ell \nu) + \cdots$
- Quark-hadron duality: $\Gamma(B \to X_c \ell \nu) \approx \Gamma(b \to c \ell \nu)$
 - (almost) from 1st principles
 - integration over (some) phase space
 - holds for moments; characterize non-perturb effects
 - all analytic

• u hides under c

Exclusive:

- $\Gamma(B \to D \mu \nu), \, \Gamma(B \to D^* \mu \nu)$
 - $\bullet\,$ Need form factors: HQET, lattice, z-expansion
 - Large fractions: in small-velocity (SV) limit semileptonic saturated by $B \to D\mu\nu + B \to D^*\mu\nu$

(Shifman & Voloshin, SJNP 47(1988)511; Boyd et al $\mathrm{PRD54}(1996)2081)$

•
$$\Gamma(B \to \pi \mu \nu), \Gamma(B \to \rho \mu \nu), \dots$$

- $\Gamma(B \to D\mu\nu), \, \Gamma(B \to D^*\mu\nu)$
 - $\bullet\,$ Need form factors: lattice, z-expansion
 - Small fractions

Inclusive:

- $\Gamma(B \to X_c \ell \nu) \equiv \Gamma(B \to D \mu \nu) + \Gamma(B \to D^* \mu \nu) + \Gamma(B \to D \pi \ell \nu) + \cdots$
- Quark-hadron duality: $\Gamma(B \to X_c \ell \nu) \approx \Gamma(b \to c \ell \nu)$
 - (almost) from 1st principles
 - integration over (some) phase space
 - holds for moments; characterize non-perturb effects
 - all analytic

• u hides under c

Inclusive $b \to c \ell \nu$

- Combined OPE-HQET
- Differential rate $d\Gamma/dx$
- Need ≥ 1 integrated kinematic variable
- Expansion in Λ/m_b
- Corrections first at $(\Lambda/m_b)^2$
- Moments of the differential rate can kill perturbative part: zero-in on non-perturb terms
- Expansion also in $\alpha_s(m_b)$

Benjamín Grinstein

Determination of V_{cb} and V_{ub}

Chay, BG, Georgi, PLB247(1990)399 Bigi et al, PRL71(1993)496 Bigi et al, PLB323(1994)408 Manohar, Wise, PRD49(1994)1310 Trott, PRD70(2004)073003 Bauer et al, PRD70(2004) 094017

Inclusive $b \to c \ell \nu$

- Combined OPE-HQET
- Differential rate $d\Gamma/dx$
- Need ≥ 1 integrated kinematic variable
- Expansion in Λ/m_b
- Corrections first at $(\Lambda/m_b)^2$
- Moments of the differential rate can kill perturbative part: zero-in on non-perturb terms
- Expansion also in $\alpha_s(m_b)$

$$\begin{split} \Gamma &= \Gamma_0^{(0)} + \frac{\alpha_s}{\pi} \Gamma_0^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \Gamma_0^{(2)} \\ &+ \left(\Gamma_\pi^{(0)} + \frac{\alpha_s}{\pi} \Gamma_\pi^{(1)}\right) \frac{\mu_\pi^2}{m_b^2} + \left(\Gamma_G^{(0)} + \frac{\alpha_s}{\pi} \Gamma_G^{(1)}\right) \frac{\mu_G^2}{m_b^2} \\ &+ \Gamma_{D_{\scriptscriptstyle \triangleleft}}^{(0)} \frac{\rho_D^3}{m_b^3} + \Gamma_{\scriptscriptstyle \perp S}^{(0)} \frac{\rho_{LS}^3}{m_b^3} + \cdots \\ &+ \Gamma_{D_{\scriptscriptstyle \triangleleft}}^{(0)} \frac{\rho_D^3}{m_b^3} + \Gamma_{\scriptscriptstyle \perp S}^{(0)} \frac{\rho_{LS}^3}{m_b^3} + \cdots \\ &= -\infty \, \text{eq} \,$$

Benjamín Grinstein

Determination of V_{cb} and V_{ub}

Chay, BG, Georgi, PLB247(1990)399 Bigi et al, PRL71(1993)496 Bigi et al, PLB323(1994)408 Manohar, Wise, PRD49(1994)1310 Trott, PRD70(2004)073003 Bauer et al, PRD70(2004) 094017

$$\begin{split} \mu_{\pi}^2 &= -\langle B | \bar{b} (i D_{\perp})^2 b | B \rangle \\ \mu_G^2 &= -\langle B | \bar{b} (i D_{\perp}^{\mu}) (i D_{\perp}^{\nu}) \sigma_{\mu\nu} b | B \rangle \end{split}$$

Recent fits:

- Six parameters: $m_{b,c}, \mu^2_{\pi,G}, \rho^3_{D,LS}$
- Includes corrections: α_s^2 at $(m_b)^0$ α_s^1 at $(m_b)^{-2}$
- Rate $\Rightarrow |V_{cb}|^2$
- Moments ⇒ non-pert parameters
- Same parameters as in
 - $b \to u \ell \nu$
 - Exclusive decays
 - Rare decays

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Bauer et al, PRD70(2004) 094017

Gambino, Schwanda PRD89 (2014) 014022

]	m_b^{kin}	m_c	μ_{π}^2	ρ_D^3	μ_G^2	ρ_{LS}^3	$BR_{c\ell\nu}(\%)$	$10^3 V_{cb} $
]	4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
	0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86

Alberti et al, PRL114(2015)061802

m_b^{kin}	$\overline{m}_c(3{ m GeV})$	μ_{π}^2	ρ_D^3	μ_G^2	$ ho_{LS}^3$	$\mathrm{BR}_{c\ell\nu}$	$10^3 V_{cb} $
4.553	0.987	0.465	0.170	0.332	-0.150	10.65	42.21
0.020	0.013	0.068	0.038	0.062	0.096	0.16	0.78

Exclusive: $B \to D^* \ell \nu$

$$\begin{split} \langle D^*(p',\epsilon) | V^{\mu} \left| \bar{B}(p) \right\rangle &= ig \epsilon^{\mu\alpha\beta\gamma} \epsilon^*_{\alpha} \, p'_{\beta} \, p_{\gamma} \\ \langle D^*(p',\epsilon) | A^{\mu} \left| \bar{B}(p) \right\rangle &= f_0 \epsilon^{*\mu} + (\epsilon^* \cdot p) [a_+(p+p')^{\mu} + a_-(p-p')^{\mu}] \end{split}$$

$$\frac{d\Gamma}{dw} = \frac{G_F^2 m_B^5}{48\pi^3} |V_{cb}|^2 \sqrt{w^2 - 1} P(w) (\eta_{ew} \mathcal{F}(w))^2$$

•
$$w = p_B \cdot p_{D^*} / m_B m_{D^*}$$

- P(w) from phase space
- $\eta_{ew} = 1.007$ ew-correction
- HQS: $\mathcal{F}(1) = 1$ for $m_b = \infty$; corrections from μ_X^2 , α_s
 - No $1/m_b$ corrections to FFs
 - Extrapolate to w = 1: see next slide
- Lattice $\Rightarrow \mathcal{F}(w)$; talk by Ran Zhou (next)

Exclusive: $B \to D^* \ell \nu$ *z*-expansion

$$ff(w) = \mathcal{P}(z) \sum_{n=0}^{\infty} a_n z^n, \quad \sum_{n=0}^{\infty} a_n^2 \le 1, \qquad z =$$

$$z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

- Uses: extrapolation, lattice fit
- Ingredients: Analyticity, crossing symmetry, unitarity
- $\mathcal{P}(z)$: computable (Blaschke, QCD)
- Physical region: $0 \le z \le 0.056$
- Not just a "parametrization:" $n \ge 2$ terms give no more than 1%

BGL: Boyd, BG, Lebed, PLB353 (1995) 306; Nuovo Cim. A109 (1996) 863; NPB 461 (1996) 493; PRD56 (1997) 6895-6911

CLN:

Caprini, Neubert, PLB380 (1996) 376; C, Lellouch, N, NPB530 (1998) 153

FNAL/MILC: PRD89 (2014) 114504

HFAG: $|V_{cb}|\mathcal{F}(1) = 35.90(45) \times 10^{-3}$, FNAL/MILC: $\mathcal{F}(1) = 0.906(13)$

 $|V_{cb}| = 39.04(49)_{\rm exp}(53)_{\rm lat}(19)_{\rm QED} \times 10^{-3}$

Exclusive: $B \to D\ell\nu$

$$\begin{split} \langle D(p')|V^{\mu}|B(p)\rangle &= f_{+}(p+p')^{\mu} + (f_{0}-f_{+})\frac{m_{B}^{2}-m_{D}^{2}}{q^{2}}q^{\mu}, \ q=p-p', \ f=f(q^{2})\\ \\ &\frac{d\Gamma}{dw} = \frac{G_{F}^{2}m_{B}^{5}}{48\pi^{3}}|V_{cb}|^{2}(m_{B}+m_{D})^{2}m_{D}^{3}(\sqrt{w^{2}-1})^{3}(\eta_{\mathrm{ew}}\mathcal{G}(w))^{2} \end{split}$$

Story in pictures: (HPQCD - PRD92 (2015) 054510)

MILC PRD92 (2015) 034506 MILC uses BGL for fit, else no control of theoretical errors.

P. Gambino at Beauty 2016

A global fit to $B \rightarrow Dlv$

- | *V*_{cb} | =40.62(0.98) 10⁻³ preliminary (BGL,N=2)
- | *V_{cb}* | =40.49(0.99) 10⁻³ preliminary (BGL,N=3,4)
- based on z-expansion with unitarity constraints using Boyd,Grinstein,Lebed & Caprini,Lellouch,Neubert 1997
- assumes no correlation between FNAL and HPQCD, 3% syst error on Babar data, correct treatment of last bin, no finite size bin effect, updated Belle results 1510.03657
- CLN parameterization gives | V_{cb} | = 40.85(95)10⁻³ but terrible fit (p-value < 10⁻⁵) when lattice results for f₀ are included.
 We are getting too precise for CLN!!
- Non-zero recoil lattice results are crucial: only zero recoil leads to $|V_{cb}|$ = 39.6(2.1) 10⁻³ (BGL) 40.0(1.1) 10⁻³ (CLN)
- Very precise **R**(**D**)=0.302(3), 1.9σ from HFAG average

• **Excesses** observed at more than 4σ

Benjamín Grinstein

	R(D)	$R(D^*)$
BaBar	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$
Belle	$0.375^{+0.064}_{-0.063} \pm 0.026$	$0.293^{+0.039}_{-0.037} \pm 0.015$
LHCb		$0.336 \pm 0.027 \pm 0.030$
Exp. average	0.388 ± 0.047	0.321 ± 0.021
SM expectation	0.300 ± 0.010	0.252 ± 0.005
Belle II, 50 ab^{-1}	± 0.010	± 0.005

T. Freytsis et al. 1506.08896

Determination of V_{cb} and V_{ub}

《曰》 《聞》 《臣》 《臣》

3

Inclusive: $B \to X_u \ell \nu$

The problem:

- $q^2 > (m_B m_D)^2$ less sensitive to shape function (SF); sensitive to m_b , $(\Lambda/m_b)^3$ corrs, low rate, missing E
- $m_X < m_D$, sensitive to SF, higher rate
- $E_{\ell} > (m_b^2 m_D^2)/2m_B$ sensitive to SF, low rate, simplest

• Expand in $k/m_b \sim \Lambda_{\rm QCD}/m_b$ but $q/m_b \sim 1$.

$$\bar{\Gamma}\frac{i}{m_b \psi - \not{q} + \not{k} + i\epsilon}\Gamma = \frac{i}{m_b^2 - 2m_b q_0 + i\epsilon}\bar{\Gamma}(m_b \psi - \not{q})\bar{\Gamma} + \cdots$$

• Series in poles $q_0 - m_b/2$; endpoint region is $q_0 \approx m_b/2$

• \Rightarrow retain all orders; $x = 2q_0/m_b$, $\operatorname{Im} \frac{1}{1-x-i\epsilon} = \pi \delta(1-x)$

$$\frac{d\Gamma}{dx} \propto \left(\delta(1-x) - \frac{\lambda_1 + 3\lambda_2}{2m_b^2} \delta'(1-x) + \cdots\right) = f(1-x)$$

- Non-perturbative SF $2m_B f(\omega) = \langle B | \bar{h}_v \delta(\omega + in \cdot D) h_v | B \rangle$, $(n^2 = 0, n \cdot v = 1)$ (M. Neubert, PRD49(1994)4623, Bigi et al., IJMP A9(1994)2467)
- Endpoint spectra in $B \to X_u \ell \nu$ given in terms of $f(\omega)$ too
- Some analysis eliminate $f(\omega)$ from combined $B \to X_s \gamma$ and $B \to X_u \ell \nu$ analysis; other model SF subject to moment constraints

QCD Calculation	Phase Space Region	$\Delta \Gamma_{\text{theory}} (\text{ps}^{-1})$	$ V_{ub} (10^{-3})$
	$M_X \le 1.55$ GeV	$39.3^{+4.7}_{-4.3}$	$4.17 \pm 0.15 \pm 0.12^{+0.24}_{-0.24}$
	$M_X \le 1.70 \text{ GeV}$	$46.1^{+5.0}_{-4.4}$	$3.97 \pm 0.17 \pm 0.14^{+0.20}_{-0.20}$
	$P_{+} \leq 0.66 \text{ GeV}$	$38.3^{+4.7}_{-4.3}$	$4.02 \pm 0.18 \pm 0.16^{+0.24}_{-0.23}$
BLNP	$M_X \leq 1.70 \text{ GeV}, q^2 \geq 8 \text{ GeV}^2$	$23.8^{+3.0}_{-2.4}$	$4.25 \pm 0.19 \pm 0.13^{+0.23}_{-0.25}$
	$M_X - q^2, p_\ell^* > 1.0 \text{ GeV}$	$62.0^{+6.2}_{-5.0}$	$4.28 \pm 0.15 \pm 0.18^{+0.18}_{-0.20}$
	$p_{\ell}^* > 1.0 \text{ GeV}$	$62.0^{+6.2}_{-5.0}$	$4.30 \pm 0.18 \pm 0.21^{+0.18}_{-0.20}$
	$p_{\ell}^* > 1.3 \text{ GeV}$	$52.8^{+5.3}_{-4.3}$	$4.29 \pm 0.18 \pm 0.20^{+0.19}_{-0.20}$
	$M_X \le 1.55$ GeV	$35.3^{+3.3}_{-3.5}$	$4.40 \pm 0.16 \pm 0.12^{+0.24}_{-0.19}$
	$M_X \le 1.70$ GeV	$42.0^{+4.8}_{-4.8}$	$4.16 \pm 0.18 \pm 0.14^{+0.26}_{-0.22}$
	$P_{+} \le 0.66 \text{ GeV}$	$36.9^{+5.5}_{-5.8}$	$4.10 \pm 0.19 \pm 0.17^{+0.37}_{-0.28}$
DGE	$M_X \leq 1.70 \text{ GeV}, q^2 \geq 8 \text{ GeV}^2$	$24.4^{+2.4}_{-2.0}$	$4.19 \pm 0.19 \pm 0.12^{+0.18}_{-0.19}$
	$M_X - q^2, p_\ell^* > 1.0 \text{ GeV}$	$58.7^{+3.5}_{-3.2}$	$4.40 \pm 0.16 \pm 0.18^{+0.12}_{-0.13}$
	$p_{\ell}^{*} > 1.0 \text{ GeV}$	$58.7^{+3.5}_{-3.2}$	$4.42 \pm 0.19 \pm 0.23^{+0.13}_{-0.13}$
	$p_{\ell}^{*} > 1.3 \text{GeV}$	$50.4^{+3.3}_{-3.0}$	$4.39 \pm 0.19 \pm 0.20^{+0.15}_{-0.14}$
	$M_X \le 1.55$ GeV	$41.0^{+4.6}_{-3.8}$	$4.08 \pm 0.15 \pm 0.11^{+0.20}_{-0.21}$
	$M_X \le 1.70 \text{ GeV}$	$46.8^{+4.2}_{-3.6}$	$3.94 \pm 0.17 \pm 0.14^{+0.16}_{-0.17}$
	$P_{+} \le 0.66 \text{ GeV}$	$44.0^{+8.6}_{-6.3}$	$3.75 \pm 0.17 \pm 0.15^{+0.30}_{-0.32}$
GGOU	$M_X \leq 1.70 \text{ GeV}, q^2 \geq 8 \text{ GeV}^2$	$24.7^{+3.2}_{-2.4}$	$4.17 \pm 0.18 \pm 0.12^{+0.22}_{-0.25}$
	$M_X - q^2$, $p_\ell^* > 1.0$ GeV	$60.2^{+3.0}_{-2.5}$	$4.35 \pm 0.16 \pm 0.18^{+0.09}_{-0.10}$
	$p_{\ell}^* > 1.0 \text{ GeV}$	$60.2^{+3.0}_{-2.5}$	$4.36 \pm 0.19 \pm 0.23^{+0.09}_{-0.10}$
	$p_{\ell}^* > 1.3 \text{ GeV}$	$51.8^{+2.8}_{-2.3}$	$4.33 \pm 0.18 \pm 0.20^{+0.10}_{-0.11}$
	$M_X \le 1.55$ GeV	$47.1^{+5.2}_{-4.3}$	$3.81 \pm 0.14 \pm 0.11^{+0.18}_{-0.20}$
	$M_X \le 1.70 \text{ GeV}$	$52.3^{+5.4}_{-4.5}$	$3.73 \pm 0.16 \pm 0.13^{+0.17}_{-0.18}$
	$P_+ \leq 0.66 \text{ GeV}$	$48.9^{+5.6}_{-4.6}$	$3.56 \pm 0.16 \pm 0.15^{+0.18}_{-0.19}$
ADFR	$M_X \leq 1.70 \text{ GeV}, q^2 \geq 8 \text{ GeV}^2$	$30.9^{+3.0}_{-2.5}$	$3.74 \pm 0.16 \pm 0.11^{+0.16}_{-0.17}$
	$M_X - q^2, p_\ell^* > 1.0 \text{ GeV}$	$62.0^{+5.7}_{-5.0}$	$4.29 \pm 0.15 \pm 0.18^{+0.18}_{-0.19}$
	$p_{\ell}^* > 1.0 \text{ GeV}$	$62.0^{+5.7}_{-5.0}$	$4.30 \pm 0.19 \pm 0.23^{+0.18}_{-0.19}$
	$p_{\ell}^* > 1.3 \text{ GeV}$	$53.3^{+5.1}_{-4.4}$	$4.27 \pm 0.18 \pm 0.19^{+0.18}_{-0.19}$

BaBar PRD86 (2012) 032004

BLNP: Bosch, et al PRD 72 (2005)073006

DGE: "dressed gluon exponentiation" Andersen, Gardi, JHEP 0601 (2006)097

ADFR: Aglietti, et al Eur. Phys. J. C 59(2009)831

GGOU: Gambino, *et al* JHEP 0710 (2007)058

(日) (圖) (필) (필) (필)

PDG:

 $|V_{ub}| = (4.41 \pm 0.15_{\exp-0.17\text{th}}) \times 10^{-3}$

Exclusive $|V_{ub}|: B \to \pi \ell \nu$

$$\begin{split} \text{Much as in } B &\to D\ell\nu \\ \langle \pi(p')|V^{\mu}|B(p)\rangle &= f_{+}(p+p')^{\mu} + (f_{0} - f_{+})\frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}}q^{\mu} \\ &\frac{d\Gamma}{dq^{2}} = \frac{G_{F}^{2}m_{B}^{5}}{48\pi^{3}}|V_{ub}|^{2}|p_{\pi}|^{3}|f_{+}(q^{2})|^{2} \end{split}$$

- $f_{+,0}(q^2)$ from Lattice: next talk Ran Zhou UKQCD PRD91(2015)074510; FNAL/MILC PRD92(2015)014024
- Interpolation: z-fit Boyd, BG, Lebed, PRL74(1995)4603; Bourrely, Caprini, Lellouch PRD79(2009)013008

• Fit lattice and data to z-fit Arnesen et al. PRL95(2005)071802

Figure cum Conclusions

- $|V_{cb}|$ incl. vs $D^*(\text{FNAL/MILC})$ is ~ 8%(~ 3σ)
- RH currents won't do

$$\begin{split} |V_{cb}|_{\text{incl}} &= |V_{cb}|(1+\frac{1}{2}\epsilon^2) \\ |V_{cb}|_{D^*} &= |V_{cb}|(1+\epsilon) \\ |V_{cb}|_{D} &= |V_{cb}|(1-\epsilon) \end{split}$$

- More general NP dim-6 ops can't either Crivellin, Pokorski 1407.1320
- Tension decreased on $|V_{ub}|$ Bernlochner, Ligeti, Turczyk, PRD90(2014)094003

Benjamín Grinstein Determination of V_{cb} and V_{ub}