High-precision theory for top-quark production

Nikolaos Kidonakis (Kennesaw State University)

- Top-antitop pair production
- Single-top production
- Associated top production with bosons
- Top production via anomalous couplings

supported by NSF

Top-antitop pair production

QCD corrections are very significant for $t\bar{t}$

fixed-order NNLO calculations - analytical and numerical (different approaches - many groups)

Soft-gluon corrections are important and they approximate exact results very well

Calculate/resum these soft corrections at NNLL accuracy – various approaches

Approximate N^3LO (a N^3LO) predictions for cross sections are derived by adding third-order soft corrections to fixed-order results

 $aN^{3}LO = LO + NLO + NNLO + approx N^{3}LO$ corrections

Comparison of various approx NNLO predictions

all with the same choice of parameters

Kidonakis, PRD 82, 114030 (2010) differential-pQCD Aliev et al, CPC 182, 1034 (2011) total-pQCD Ahrens et al, PLB 703, 135 (2011) differential-SCET Beneke et al, NPB 855, 695 (2012) total-SCET Cacciari et al, PLB 710, 612 (2012) total-pQCD

differences in accuracies of approximations

Top-pair cross sections at the LHC and the Tevatron

aN³LO total $t\bar{t}$ cross sections with $m_t = 173.3$ GeV

LHC 13 TeV: 810^{+24+30}_{-16-32} pb LHC 14 TeV: 957^{+28+34}_{-19-36} pb

NK, Phys. Rev. D 90, 014006 (2014) [arXiv:1405.7046 [hep-ph]]

Relative size of perturbative corrections

$$\sigma^{\mathrm{aN^3LO}} = \sigma^{(0)} \left[1 + \frac{\sigma^{(1)}}{\sigma^{(0)}} + \frac{\sigma^{(2)}}{\sigma^{(0)}} + \frac{\sigma^{(\mathrm{a3})}}{\sigma^{(0)}} \right]$$

Fractional contributions to the perturbative series for the $t\bar{t}$ cross section								
corrections	Tevatron 1.96 TeV	LHC 7 TeV	LHC 8 TeV	LHC 13 TeV	LHC 14 TeV			
$\sigma^{(1)}/\sigma^{(0)}$	0.236	0.470	0.476	0.493	0.496			
$\sigma^{(2)}/\sigma^{(0)}$	0.106	0.178	0.177	0.172	0.170			
$\sigma^{(\mathrm{a}3)}/\sigma^{(0)}$	0.068	0.066	0.059	0.045	0.043			
$\sigma^{\mathrm{aN^3LO}}/\sigma^{(0)}$	1.410	1.714	1.712	1.710	1.709			

Higher-order corrections are sizable for total cross sections and also for differential distributions

NNLO is not enough

 $aN^{3}LO$ needed for precision physics

Top quark p_T distribution at the LHC

NK, Phys. Rev. D 91, 031501 (2015) [arXiv:1411.2633 [hep-ph]]

Normalized top quark p_T distribution at 7 TeV LHC

N. Kidonakis, HQL2016, Blacksburg, VA, May 2016

Normalized top quark p_T distribution at 8 and 13 TeV LHC

Boosted top quark p_T distribution at 8 TeV LHC

Top quark rapidity distribution at the LHC

NK, Phys. Rev. D 91, 031501 (2015) [arXiv:1411.2633 [hep-ph]]

Normalized top quark rapidity distribution at the LHC

N. Kidonakis, HQL2016, Blacksburg, VA, May 2016

Top quark p_T and rapidity distributions at the Tevatron

Top forward-backward asymmetry at the Tevatron

 $A_{\rm FB} = \frac{\sigma(y_t > 0) - \sigma(y_t < 0)}{\sigma(y_t > 0) + \sigma(y_t < 0)} \equiv \frac{\Delta\sigma}{\sigma}$

large corrections: aN³LO/NNLO ratio is 1.05 NK, Phys. Rev. D 91, 071502 (2015) [arXiv:1501.01581]

Top-quark asymmetry at the Tevatron					
aN ³ LO A_{FB} %	$p\bar{p}$ frame	$t\bar{t}$ frame			
QCD only	6.0 ± 0.1	8.7 ± 0.2			
QCD+EW	6.8 ± 0.3	10.0 ± 0.6			

Top differential $A_{\rm FB}$: $A_{\rm FB}^{\rm bin} = \frac{\sigma_{\rm bin}^+(\Delta y) - \sigma_{\rm bin}^-(\Delta y)}{\sigma_{\rm bin}^+(\Delta y) + \sigma_{\rm bin}^-(\Delta y)}$ with $\Delta y = y_t - y_{\bar{t}}$

N. Kidonakis, HQL2016, Blacksburg, VA, May 2016

Single-top partonic processes at LO

Single-top cross sections

aNNLO single-top cross sections +-scale&pdf $m_t=172.5 \text{ GeV}$

Excellent agreement of theory with data for all three channels NK, PRD 81, 054028 (2010); PRD 82, 054018 (2010); PRD 83, 091503(R) (2011)

Single top *t*-channel production at aNNLO

$$m_{t} = 173.3 \text{ GeV} \qquad \begin{array}{cccc} \text{LHC} & t & \bar{t} & \text{Total (pb)} \\ \\ 13 \text{ TeV} & 136^{+3}_{-1} \pm 3 & 82^{+2}_{-1} \pm 2 & 218^{+5}_{-2} \pm 5 \\ \\ 14 \text{ TeV} & 154^{+4}_{-1} \pm 3 & 94^{+2+2}_{-1-3} & 248^{+6+5}_{-2-6} \end{array}$$

 \pm scale \pm pdf errors with MSTW2008 NNLO pdf 90% CL

ratio $\sigma(t)/\sigma(\bar{t}) = 1.82^{+0.10}_{-0.09}$ at 8 TeV

- compares well with CMS result $1.95 \pm 0.10 \pm 0.19$

agrees with NNLO result of

Brucherseifer, Caola, Melnikov, Phys. Lett. B 736, 58 (2014) [1404.7116 [hep-ph]]

Single top *t*-channel aNNLO p_T distributions at the LHC

t-channel top p_T distribution at LHC aNNLO $m_t=173.3$ GeV

N. Kidonakis, HQL2016, Blacksburg, VA, May 2016

Single top t-channel aNNLO normalized p_T distributions at the LHC

t-channel normalized top p_T distribution at LHC aNNLO $m_t=173.3 \text{ GeV}$ t-channel normalized antitop p_T distribution at LHC aNNLO $m_t=173.3 \text{ GeV}$

N. Kidonakis, HQL2016, Blacksburg, VA, May 2016

Single top s-channel production at aNNLO

LHC	t	$ar{t}$	Total (pb)
$13 { m TeV}$	$7.07 \pm 0.13^{+0.24}_{-0.22}$	$4.10 \pm 0.05^{+0.14}_{-0.16}$	$11.17 \pm 0.18 \pm 0.38$
$14 { m TeV}$	$7.79 \pm 0.14^{+0.31}_{-0.24}$	$4.57 \pm 0.05^{+0.18}_{-0.17}$	$12.35 \pm 0.19^{+0.49}_{-0.41}$

 $(m_t = 173.3 \text{ GeV}) \pm \text{scale} \pm \text{pdf errors with MSTW2008 NNLO pdf 90\% CL}$

N. Kidonakis, HQL2016, Blacksburg, VA, May 2016

Associated tW^- production at aNNLO at the LHC

	LHC	tW^-	$tW^- + \bar{t}W^+$ (pb)
$m_t = 173.3 \mathrm{GeV}$	$13 { m TeV}$	$35.2 \pm 0.9^{+1.6}_{-1.7}$	$70.4 \pm 1.8^{+3.2}_{-3.4}$
	$14 { m TeV}$	$41.6 \pm 1.0^{+1.5}_{-2.3}$	$83.1 \pm 2.0^{+3.1}_{-4.6}$

\pm scale \pm pdf errors with MSTW2008 NNLO pdf 90% CL

н.

Top p_T distribution in tW production at LHC aNNLO $m_1=173.3 \text{ GeV}$

N. Kidonakis, HQL2016, Blacksburg, VA, May 2016

Associated production of a $t\bar{t}$ pair with bosons

NLO: $t\bar{t}W, t\bar{t}Z, t\bar{t}\gamma$ production

NLO+NLL: $t\bar{t}H$ production

Associated production of a single top with bosons

NLO: tH and tZ production

aNNLO: tH^- production

tH^- production

NK, arXiv:1605.00622 [hep-ph]

FCNC processes via anomalous top couplings

Single-top production via flavor-changing neutral currents Anomalous couplings in Lagrangian, e.g.

$$\Delta \mathcal{L}^{eff} = \frac{1}{\Lambda} \kappa_{tqV} e \, \bar{t} \, \sigma_{\mu\nu} \, q \, F_V^{\mu\nu} + h.c.$$

known at LO + soft-gluon corrections

the corrections beyond LO are significant

Top production via anomalous gluon couplings

NK and E. Martin, Phys. Rev. D 90, 054021 (2014) [1404.7488 [hep-ph]]

Summary

- cross sections and distributions for $t\bar{t}$ through aN³LO top quark p_T and rapidity distributions top quark forward-backward asymmetry
- cross sections and distributions for single-top production
- top production in association with bosons
- top production via anomalous couplings
- high-order corrections are very significant
- excellent agreement with LHC and Tevatron data
- a lot of theoretical progress