DEEP UNDERGROUND VH NEUTRINO EXPERIMENT

5/17/16, 2:03 PM

Heavy Quarks and Leptons - May 22-27, 2016 - Virginia Tech

About the Workshop Accommodation Location Travel Registration Progra

Poster Social Confe Proce Comm Previo The XIIIth International Conference on Heavy Quarks and Leptons will be held in Blacksburg, Virginia from May 22 through May 27, 2016. The conference will be hosted by Virginia Tech's Center for Neutrino Physics.

Heavy Quarks and Leptons is dedicated to the study of the heavy quarks charm, bottom, and top with obvious extensions to interesting topics involving the strange quark. Neutrino oscillation

Stephen Parke - Fer NEUTRINO EXPERIMENT for DUNE Collaboration

856 collaborators 149 Institutions 29 Nations

Stephen Parke, Fermilab

HQL/Virginia Tech

5/26/2016

Di

What is DUNE/LBNF?

DUNE/LBNF will consist of

•

٠

٠

- An intense (1-2 MW) neutrino beam from Fermilab
- A massive (70 kton) deep underground LAr Detector South Dakota
- A large Near Detector at Fermilab
- A large International Collaboration (~1000 scientist)

DUNE

What is DUNE/LBNF?

¥ ¥

DUNE/LBNF will consist of

•

٠

٠

- An intense (1-2 MW) neutrino beam from Fermilab
- A massive (70 kton) deep underground LAr Detector South Dakota
- A large Near Detector at Fermilab
- A large International Collaboration (~1000 scientist)

Protons & Neutrino Beam

LBNF and PIP-II

In beam-based long-baseline neutrino physics:

§ beam power drives the sensitivity

☑ LBNF will be the world's most intense highenergy v beam

- § 1.2 MW from day one
 - NuMI (MINOS) <400 kW
 - NuMI (NOVA) ultimately 700 kW
- § upgradable to 2.4 MW
- **Requires PIP-II** (proton-

improvement plan)

- § **major** upgrade of FNAL accelerator infrastructure
- § Replace existing 400 MeV LINAC with 800 MeV SC LINAC

The LBNF Neutrino Beam

- i) Start with an intense (MW) proton beam from PIP-II
- § ii) Point towards South Dakota
- § iii) Smash high-energy (~80 GeV) protons into a target 🔿 hadrons
- § iv) For neutrino/antineutrino beam focus positive/negative pions/kaons
- § v) Allow them to decay, e.g. $\pi^+ \rightarrow \mu^+ \nu_{\mu}$
- s vi) Absorb remaining charged particles in rock
- § vii) Left with a "collimated" ν_{μ} beam

DUNE ND (in brief)

CDR design is the NOMAD-inspired FGT (F

- It consists of:
 - Central straw-tube tracking system
 - Lead-scintillator sampling ECAL
 - RPC-based muon tracking systems
- Other options being studied
- The Near Detector provides:
 - Constraints on cross sections and the neutrino flux
 - Sterile neutrino search
 - A rich self-contained non-oscillation neutrino physics program

Will result in unprecedented samples of ν interactions

- **>100 million** interactions over a wide range of energies:
 - strong constraints on systematics
 - the ND samples will represent a huge scientific opportunity

HQL/Virginia Tech

5

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850ft level (~1.5km underground)

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850ft level (~1.5km underground)

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850ft level (~1.5km underground)

Fiducial = $4 \times 10 \text{ kt}$

HQL/Virginia Tech

5/26/2016

Fiducial = $4 \times 10 \text{ kt}$

Ar from $\sim 10~{ m km}^3$ of air

= 300m \times Area of Fermilab site (30 km²)

Liquid Argon TPC Basics

e.g. a modular implementation of Single-Phase TPC

Record ionization in LAr volume ⇒ 3D image

3 planes in DUNE

Staged Approach to 40 kt (fiducial)

Layout at the Sanford Underground Research Facility

- Four chambers hosting four independent 10-kt FD modules
 - Gives flexibility for staging & evolution of LAr-TPC technology design
 - Assume four identical cryostats: 15.1 (W) x 14.0 (H) x 62 (L) m³
 - Assume the four 10-kt modules will be similar but **not identical**

Collaboration considering two LAr readout technologies

- Single-Phase (Ionization read out in the Liquid Ar)
 - Demonstrated by ICARUS, ArgoNut & MicroBooNE
 - Forms basis of first 10-kt detector
- Dual-Phase (Ionization amplified and readout out in Gas phase)
 - Pioneered by WA105 (protoDUNE-DP)
 - Option for second and/or subsequent detector modules
- Large-scale prototyping going in parallel at CERN: protoDUNE–SP & protoDUNE-DP

Events:

Events:

(collection plane view)

ArgoNeuT

Stephen Parke, Fermilab

5/26/2016

Physics of DUNE:

·Neutrino Mass & Mixing Physics

- \cdot Stringent test of the 3 Neutrino paradigm
- \cdot CP Violation, Mass Ordering, Dominant Flavor of v_3,

· Proton Decay

- $\cdot \text{ especially } \quad p \to K \, \nu$
- SuperNova Neutrinos
 - $\cdot v_e$ flux from core-collapse in Milky Way

• Surprises !

· NSI, sterile v, Lorentz Violation, v decay, decoherent,

11

Physics of DUNE:

·Neutrino Mass & Mixing Physics

 \cdot Stringent test of the 3 Neutrino paradigm

· CP Violation, Mass Ordering, Dominant Flavor of v_3 ,

- · Proton Decay
 - $\cdot \text{ especially } \quad p \to K \, \nu$
- SuperNova Neutrinos
 - $\cdot v_e$ flux from core-collapse in Milky Way

· Surprises !

· NSI, sterile v, Lorentz Violation, v decay, decoherent,

11

<u>CP Violation:</u>

DUNE will address big questions in science, e.g.

- The matter-antimatter asymmetry in the Universe
 - CP Violation in the leptonic sector

- Big Bang: matter & antimatter created in equal amounts
 - As Universe cools down matter and antimatter then annihilate
 - All things being equal, no matter/antimatter remains, just light
 - This is not what happened there is matter left in the Universe

- Neutrinos: best bet to how this happened through "leptogenesis"

Observation of Neutrino Mass implies New Physics

Right Handed Neutrino + Lepton # Conservation
 (Dirac)

OR

•

- New Interactions: (LH)²
 (Majorana)
- WHAT IS THE MASS SCALE OF THE NEW PHYSICS?

 \cdot Is there CP Violation

· Mass Ordering

 \cdot Dominant Flavor Content of v_3

• Is there CP Violation

Fractional Flavor Content varying $\cos \delta$

· Mass Ordering

· Dominant Flavor Content of v_3

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –	– Typeset by $\mbox{Foil}T_{\!E\!}X$ –			– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ – 1	
– Typeset by Foil $\mathrm{T}_{E}\!\mathrm{X}$ –			1		– Types
– Typeset by Foil $T_{\! E}\! X$ –		1			

Stephen Parke, Fermilab

nueutrino SM Physics Channels:

Appearance:
$$u_{\mu}
ightarrow
u_{e} \quad ar{
u}_{\mu}
ightarrow ar{
u}_{e}$$

Disappearance: $\nu_{\mu} \rightarrow \nu_{\mu} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

Stephen Parke, Fermilab

TMEX @ U of Warsaw

09/05/2014

<u>nu e Appearance</u>

Minakata & Nunokawa hep-ph/010805

Normal Ordering — Inverted Ordering

T2K/HK

 $u_{\mu}
ightarrow
u_{\mu}$ gives:

$$\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.96 - 1.00$$

$$|U_{\mu3}|^2 \leftrightarrow (1 - |U_{\mu3}|^2)$$
 degeneracy !

<u>nu e Appearance</u>

Minakata & Nunokawa hep-ph/010805

Normal Ordering — Inverted Ordering

T2K/HK

NOvA

 $u_{\mu} \rightarrow \nu_{\mu}$ gives:

$$\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.96 - 1.00$$

 $|U_{\mu3}|^2 \leftrightarrow (1 - |U_{\mu3}|^2)$ degeneracy !

<u>nu e Appearance</u>

Minakata & Nunokawa hep-ph/010805

Normal Ordering — Inverted Ordering

T2K/HK

Same L/E as ${\rm NO}\nu{\rm A}$

 $u_{\mu}
ightarrow
u_{\mu}$ gives:

$$\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.96 - 1.00$$

 $|U_{\mu3}|^2 \leftrightarrow (1 - |U_{\mu3}|^2)$ degeneracy !

<u>nu e Appearance</u>

Minakata & Nunokawa hep-ph/010805

Normal Ordering — Inverted Ordering

T2K/HK

 $u_{\mu}
ightarrow
u_{\mu}$ gives:

$$\sin^2 2\theta_{\mu\mu} \equiv 4|U_{\mu3}|^2(1-|U_{\mu3}|^2) = 0.96 - 1.00$$

 $|U_{\mu3}|^2 \leftrightarrow (1 - |U_{\mu3}|^2)$ degeneracy !

Sensitivity Calculations:

Disappearance: $\nu_{\mu} \rightarrow \nu_{\mu} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

- GLoBES-based fit to four FD samples
- Two neutrino beam line designs considered
- GENIE event generator
- Reconstructed spectra predicted using detector response parameterized at the single particle level
- Simple systematics treatment
- GLoBES configurations to be made public soon

Dominant Flavor of Nu_3

~40 ktons x 2 MW x 10 years

Significance of octant determination $(\Delta \chi^2)$ **DUNE Sensitivity, Normal Hierarchy** NuFit 10 bound NUFit 2015 NuFit 3_o bound Width of significance band is due to the unknown CP phase and variations in beam design. 5σ **3**σ 0 L 35 45 50 40 55 true θ_{23} [°]

Octant Sensitivity

$\begin{array}{ll} P(\nu_{\mu} \rightarrow \nu_{e}) + P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \approx 2 \sin^{2} \theta_{23} \left[1 - P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e})\right] \\ \mbox{Long Baseline} & @VOM & Reactors \end{array}$

Stephen Parke, Fermilab

DUNE

HQL/Virginia Tech

5/26/2016

Dominant Flavor of Nu_3

~40 ktons x 2 MW x 10 years

Significance of octant determination $(\Delta \chi^2)$ **DUNE Sensitivity, Normal Hierarchy** NuFit 10 bound NuFit 2015 NuFit 3_o bound Width of significance band is due to the unknown CP phase and variations in beam design. 5σ **3**σ 0 L 35 50 45 40 55 true θ_{23} [°] NuFit 2016

Octant Sensitivity

$\begin{aligned} P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) &\approx 2 \sin^{2} \theta_{23} \left[1 - P(\bar{\nu}_{e} \to \bar{\nu}_{e}) \right] \\ \text{Long Baseline} \quad @VOM \qquad \text{Reactors} \end{aligned}$

Stephen Parke, Fermilab

DUNE

HQL/Virginia Tech

Disappearance v Appearance for: $heta_{23}$

23

<u>CP Violation:</u>

 $P(
u_{\mu}
ightarrow
u_{e})
equation P(ar{
u}_{\mu}
ightarrow ar{
u}_{e})$

in vacuum

Proton Dec

	-	•		-		<u> </u>	
							100 100
							10000
					_		
11.11			TD	-			

Decay Mode	Water	Cherenkov	Liquid Argon TPC		
	Efficiency	Background	Efficiency	Background	
$p ightarrow K^+ \overline{ u}$	19%	4	97%	1	
$p ightarrow K^0 \mu^+$	10%	8	47%	< 2	
$p ightarrow K^+ \mu^- \pi^+$			97%	1	
$n ightarrow K^+ e^-$	10%	3	96%	< 2	
$n ightarrow e^+ \pi^-$	19%	2	44%	0.8	

Sensitivity to $p \rightarrow K^+ + \overline{\nu}$

0.5 m

wire no.

MANCHESTER

5

SuperNova Neutrinos:

- LAr detectors are mainly sensitive to v_e via: v_e + ${}^{40}\text{Ar} \rightarrow e^-$ + ${}^{40}\text{K}^*$
- Sensitivity to neutronization burst
- Sensitivity to mass hierarchy
- Complementarity to other detector technologies (mostly $\overline{\nu}_{e}$ sensitivity)

Flavor composition as a function of time

Energy spectra integrated over time

26

Surprises: Non-Standard Interactions

Credible Intervals at 90%

$$i\frac{d}{dt}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = \begin{bmatrix}U\begin{pmatrix}0&0&0\\0&\Delta_{21}&0\\0&0&\Delta_{31}\end{bmatrix}U^{\dagger} + A\begin{pmatrix}1+\varepsilon_{ee}\ \varepsilon_{e\mu}\ \varepsilon_{e\tau}\\\varepsilon^*_{e\mu}\ \varepsilon_{\mu\mu}\ \varepsilon_{\mu\tau}\\\varepsilon^*_{e\tau}\ \varepsilon^*_{\mu\tau}\ \varepsilon_{\tau\tau}\end{pmatrix}\end{bmatrix}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix}$$

NSI

P.Coloma arXiv:1511.06357

Stephen Parke, Fermilab

Schedule

Stephen Parke, Fermilab

5/26/2016

Summary:

DUNE is a large (70 kton) LAr underground (1.5km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300km)

Summary:

DUNE is a large (70 kton) LAr underground (1.5km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300km)

Appearance: $\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Disappearance: $\nu_{\mu} \rightarrow \nu_{\mu} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

Summary:

DUNE is a large (70 kton) LAr underground (1.5km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300km)

Appearance: $\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Disappearance: $\nu_{\mu} \rightarrow \nu_{\mu} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

- Perform Stringent tests of the 3 neutrino paradigm
- Determine the size of CP Violation in Nu Sector
- Determine Neutrino Mass Ordering
- Determine which flavor Dominates nu_3
- Broad Physics program including Nucleon Decay & SuperNova Neutrinos

Surprises: NSI, sterile neutrinos, Nu Decay, Decoherence, Lorentz Violation,.....

thanks to:

DUNE Collaborators

especially:

Mark Thomson Elizabeth Worcester Jen Raaf Katie Scholberg Andrzej Szelc Jon Paley

