

Recent Results on Radiative and Electroweak Penguin B Decays at Belle

Akimasa Ishikawa (Tohoku University)

Introduction

- Loop processes are sensitive to physics Beyond the Standard Model (BSM) since unobserved new particles might be able to enter in the loop.
- Radiative and Electroweak Penguin B decays are experimentally and theoretically clean due to final states having color singlet photons or leptons.

Tagging Methods

- Two B mesons are produced from Y(4S).
- For some analyses, one of the B meson is tagged
 - To study/search for decays with multiple neutrinos : $B \rightarrow Kvv$
 - To know the flavor of the other B meson : $A_{CP}(B \rightarrow X_{s+d} \gamma)$
 - To improve the sensitivity : BF(B \rightarrow X_s γ)
- There are several tagging methods
 - Hadronic tagging : reconstruct hadronic B decays
 - Semileptonic tagging : reconstruct semileptonic B decays
 - Lepton tagging : just require a hard lepton from B decays

Purity

Efficiency

Radiative Decays

$\mathsf{BF}(\mathsf{B} \rightarrow \mathsf{X}_{\mathsf{s}} \gamma)$

- Branching fraction of Inclusive $B \rightarrow X_s \gamma$ is very sensitive to BSM.
 - Charged Higgs in 2HDM
 - Constructive to SM amplitude
 - Almost no $tan\beta$ dependence
 - SUSY
 - Constructive or destructive to SM
 - Depending on SUSY parameters
- Very precise prediction available.
 - 7% precision

$$\mathcal{B}_{s\gamma}^{\rm SM} = (3.36 \pm 0.23) \times 10^{-4}$$

for
$$E_0 = 1.6 \,\mathrm{GeV}$$

Measurement of BF(B \rightarrow X_s γ)

- Sum of exclusive method adopted
 - 38 Xs decay modes
 - Kπ, K2π, K3π, K4π, Kη, Kηπ, Kηππ, 3K, 3Kπ
 - Mass of hadronic system <2.8 GeV
 - corresponding to $E\gamma > 1.9 GeV$
 - BF measured in each MXs bin and then combined

$$B(B \to X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4}$$

- Extrapolated to $E_{\gamma} > 1.6 GeV$

 $B(B \rightarrow X_s \gamma) = (3.74 \pm 0.18 \pm 0.35) \times 10^{-4}$

- Best measurement with sum of exclusive method
 - Second best for all measurements

Limit on Charged Higgs in 2HDM

• World Average is consistent with the prediction by M. Misiak et al

 $\mathcal{B}_{s\gamma}^{\text{exp}} = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$ $\mathcal{B}_{s\gamma}^{\text{SM}} = (3.36 \pm 0.23) \times 10^{-4}$

• This can be used to constrain charged Higgs mass in 2HDM

Direct CP Asymmetry in $B \rightarrow X_{s+d} \gamma$

- Theoretical prediction is very precise thanks to Unitarity of the CKM matrix.
 - If deviated from 0, clear new physics signal

 $\begin{array}{ll} \mbox{Channel} & {\rm A}_{\rm CP}({\rm SM}) \\ \hline {\rm B} & \rightarrow X_s \gamma & [-0.6\% \ , \ +2.8\% \] \\ \hline {\rm B} & \rightarrow X_d \gamma & [-62\% \ , \ +14\% \] \\ \hline {\rm B} & \rightarrow X_{s+d} \gamma & 0 \end{array}$

M. Benzke et al, PRL 106, 141801 (2011)

- Inclusively reconstruct photon with $1.7 < E_{\gamma} < 2.8 \text{GeV}$
 - Veto for asymmetric decays of $\pi^0(\eta) \rightarrow \gamma \gamma$
- High momentum lepton to tag flavor of the other B
 - Correction of mixing applied

L. Pesantez et al (Belle Collaboration) PRL 114, 151601 (2015)

711fb⁻¹

Result for $A_{CP}(B \rightarrow X_{s+d}\gamma)$

- Belle performed world best measurement
 - Even better than PDG 2015!
- The result is consistent with null
- Still statistical error dominates \rightarrow Belle II

HQL 2016@Virginia Tech 20160527

Z. King et al (Belle Collaboration) to appear in PRD, arXiv:1603.06546

711fb⁻¹

Search for $B \rightarrow \phi \gamma$

- Proceeds via $b \rightarrow d$ penguin annihilation
 - Suppressed by V_{td}
 - Prediction : B(B $\rightarrow \phi \gamma$) ~ O(10^{-11~12})
- Dominant continuum background suppressed by Neural Net
- Simultaneous fit to M_{bc} , ΔE , NN, $\cos \theta_{hel}$ to extract signal yield.
 - Consistent with null
- Set a limit on BF

 $\mathcal{B}(B^0\!
ightarrow\!\phi\gamma) < 1.0 imes10^{-7}$ 90% C.L.

 Almost one order of magnitude better than previous search

Akimasa Ishikawa

HQL 2016@Virginia Tech 20160527

Electroweak Penguin Decays $b \rightarrow sl^+l^-$ and $b \rightarrow (s,d)vv$

Full Angular Analysis of $B^0 \rightarrow K^{*0}I^+I^-$

- LHCb reported 3.4 σ deviation from a SM prediction in P₅' for 4 < q² < 8GeV² which was obtained from full angular analysis of B⁰ \rightarrow K^{*0} $\mu\mu$
 - There is a discussion that the deviation can be explained by a charm loop
- Global fit to radiative and EW penguin B decays gives Wilson coefficient C₉ deviated about -1 from SM values
 - − Driven by P5', F_L , B(Bs → $\phi\mu\mu$) etc.
- Independent analyses/checks are desired.

S.Descotes-Genon et al, PRD 88 074002 (2013)

Differential Decay Width for $B \rightarrow K^*II$

Differential decay width as a function of 4 variables, q², θ_I, θ_K, and φ, is expressed in terms of form factor independent observables, P_i['].

S. Descotes-Genon et al. JHEP 05 (2013) 137

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K \\ + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_L \\ - F_L\cos^2\theta_K\cos2\theta_L + S_3\sin^2\theta_K\sin^2\theta_L\cos2\phi \\ + S_4\sin2\theta_K\sin2\theta_L\cos\phi + S_5\sin2\theta_K\sin\theta_L\cos\phi \\ + S_6\sin^2\theta_K\cos\theta_L + S_7\sin2\theta_K\sin\theta_L\sin\phi \end{bmatrix}$$

HQL 2016 θ_{K} is in θ_{L} is θ_{L} in $\phi + S_{9} \sin^{2} \theta_{K} \sin^{2} \theta_{L} \sin 2\phi$

A. Abdesselam, et al (Belle Collaboration), arXiv:1604.04042

Analysis of $B^0 \rightarrow K^* I^+ I^-$

- Only neutral B⁰ used
- Neural Net based selections were adopted to improve the sensitivity
 - 69±12 and 118±12 signal events were reconstructed for electron and muon modes.
- Since the number of signal events is small, folding method was adopted to extract P₄', P₅', P₆' and P₈' as LHCb did in 2013.

$$P'_{5}, S_{5}: \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_{L} \to \pi - \theta_{L} & \text{for } \theta_{L} > \pi/2, \end{cases}$$

• The fit is performed in bins of q²

A. Abdesselam, et al (Belle Collaboration), arXiv:1604.04042

Result for P_5'

The result for 4< q² < 8 GeV² is 2.1σ deviated from a theoretical prediction with the same direction as LHCb observed.

Results for P_4' , P_6' and P_8'

Consistent with theoretical predictions

Y. Sato, A. Ishikawa, et al. (Belle Collaboration) PRD 93 032008 (2016)

Measurement of $A_{FB}(B \rightarrow Xsl^+l^-)$

- A_{FB} in exclusive $B \rightarrow K^* I^+ I^-$ decays was measured by many experiments while A_{FB} in inclusive decays was not yet.
- Different systematic uncertainties in inclusive decays than those in exclusive decays.
 - Important tool for independent check of C₉ deviation
- Precise prediction possible but experimentally it was hard to measure.

Y. Sato, A. Ishikawa, et al. (Belle Collaboration) PRD 93 032008 (2016)

711fb⁻¹

$A_{FB}(B \rightarrow X_{s}|^{+}|^{-})$ with Semi-Inclusive Technique

- Reconstruct 36 decay modes
- 20 self-tag decay modes used to measure A_{FB}
- The result is consistent with a SM prediction within error.
- Still statistically dominated → Belle II

Search for $B \rightarrow hvv$

- If C₉ is deviated from the SM value, vector current in b→svv could be also affected in some BSM models.
- Proceeds via penguin or box diagrams
- Theoretically very clean.
 - − No charm loop as in $b \rightarrow sl^+l^-$
- Experimentally, need to tag the other B meson due to final states having multiple neutrinos.
- Hadronic B decays are used for tag side.

Mode	\mathcal{B} [10 ⁻⁶]
$B^+ o K^+ u ar{ u}$	$3.98 \pm 0.43 \pm 0.19$
$B^0 o K^0_{ m S} u ar{ u}$	$1.85 \pm 0.20 \pm 0.09$
$B^+ \to K^{*+} \nu \bar{\nu}$	$9.91 \pm 0.93 \pm 0.54$
$B^0 \to K^{*0} \nu \bar{\nu}$	$9.19 \pm 0.86 \pm 0.50$

HQL 2016@Virginia Tech 20160522

Results on $B \rightarrow hvv$

- 1104 exclusive hadronic decays are used for ٠ tagging
 - Typical tagging efficiencies for B⁺ and B⁰ are 0.3% and 0.2%, respectively.
- Reconstruct h candidates
- Vetoing K_L using K_L and muon detector
- Momentum requirement
 - $P_{h} > 1.6 GeV$
- Extra energy in ECL used for signal extraction
- Best upper limits on BF for
 - h = K^{*+}, π^+ , π^0 , ρ^+
- About 5 times larger UL than prediction for • $B \rightarrow K^* v v \rightarrow Belle II$

Mode	Upper limit	
$B^+ \to K^+ \nu \bar{\nu}$	$< 5.5 \times 10^{-5}$	-
$B^0 \to K^0_s \nu \bar{\nu}$	$<9.7\times10^{-5}$	
$B^+ \to K^{*+} \nu \bar{\nu}$	$<4.0\times10^{-5}$	
$B^0 \to K^{*0} \nu \bar{\nu}$	$< 5.5 \times 10^{-5}$	
$B^+ \to \pi^+ \nu \bar{\nu}$	$<9.8\times10^{-5}$	
$B^0 \to \pi^0 \nu \bar{\nu}$	$< 6.9 \times 10^{-5}$	
$B^+ \to \rho^+ \nu \bar{\nu}$	$<21.3\times10^{-5}$	
$B^0 o ho^0 \nu \bar{\nu}$	$<20.8\times10^{-5}$	2
$B^0 \to \phi \nu \bar{\nu}$	$< 12.7 \times 10^{-5}$	2

Summary

- Radiative and EW penguin B decays are sensitive to BSM.
- We performed BSM searches using many observables.
 - − Full angular analysis of $B \rightarrow K^*I+I$ shows 2.1 σ deviation of P_5 ' in the 4<q²<8GeV² bin as the same direction as LHCb.
 - Independent checks of the deviation of Wilson coefficient C₉ is very important using B→Xsl⁺l⁻ and/or B→K^(*)vv which need very high statistics → Belle II
- Still important analyses are in pipeline. Some of which to be presented at ICHEP 2016 @ Chicago.
- Stay tuned!

Acknowledgement

 This talk is supported by Grants-in-Aid for Scientific Research B, No. ?????, "World best sensitivities of new physics searches with Electroweak Penguin B decays and development of light and fast-readout pixel detector" from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

backup

D. Dutta, et al (Belle Collaboration) PRD 91, 011101(R) (2015)

Search for $B_{\varsigma} \rightarrow \gamma \gamma$

- Sensitive to RPV SUSY
 - − RP conserving SUSY effect to $B_s \rightarrow \gamma \gamma$ is constrained by B(b→sγ)
- Prediction on BF is ~10⁻⁶
- Measured on Y(5S)
 - $Y(5S) \rightarrow Bs^{(*)}Bs^{(*)}$
- Two hard photons
- Simultaneous fit to M_{bc} and ΔE
- Set a limit on BF
 - $< 3.1 \times 10^{-6}$
- Exclude large contribution of RPV SUSY

D. Dutta, et al (Belle Collaboration) PRD 91, 011101(R) (2015)

121fb⁻¹

Measurement of $B_s \rightarrow \phi \gamma$

- Counter part of $B \rightarrow K^* \gamma$
- Measured on Y(5S)
 - $Y(5S) \rightarrow Bs^{(*)}Bs^{(*)}$

$$\mathcal{B}(B_s^0 \to \phi \gamma) = (3.6 \pm 0.5 (\text{stat.}) \pm 0.3 (\text{syst.}) \pm 0.6 (f_s)) \times 10^{-5}$$