HYPER-KAMIOKANDE

Masaki Ishitsuka (Tokyo Institute of Technology) on behalf of **the Hyper-Kamiokande proto collaboration** The XIIIth International Conference on Heavy Quarks and Leptons May 27, 2016 @ Center for Neutrino Physics, Virginia Tech

Water Čherenkov Detector

- **Neutrino** Charged particle in water Photosensors
- Cherenkov ring
 - Particle identification (> 99% efficiency)
 - Momentum reconstruction (energy and direction)
- Large mass \Rightarrow rare process (p decay, v physics)
- Well established technology \rightarrow next slide

New physics revealed by WČ detectors

Kamiokande (1983-1996)

3 kton water 1,000 PMTs

55 kton water 11,000 PMTs

Super-Kamiokande (1996-)

- Proton decay search
- Atmospheric neutrino anomaly
- Solar neutrino observation
- Supernova 1987A

Birth of Neutrino Astrophysics

- Proton decay: exclude SU(5)
- Atmospheric neutrino oscillation
- Solar neutrino oscillation
- Long baseline (K2K / T2K)
- ⇒ Ø Discovery of Atmospheric Neutrino Oscillations

New physics with Hyper-Kamiokande

- CP violation
- Mass hierarchy
- θ_{23} octant
- Neutrino astrophysics
- Supernova
- Proton decay

New photosensor

Hyper-Kamiokande Detector Design

Two high performance water Cherenkov detectors

- 74m $\Phi \times 60m$ H \Rightarrow 180kton fiducial mass
- 40,000 × 20-inch new PMTs (next slide) \Rightarrow 40% photocoverage

Cavity(Lining)

Outer Water Tank

Hyper-K PMT developed with Hamamatsu

- Box & Line dynode structure (SK: Venetian Blind)
- ×2 photodetection efficiency
- **×2** better timing response
- **×2** water pressure resistance (>100m equivalent)

⇒ Significant impact to detector design and physics performance

Upgrade of J-PARC neutrino beam

- J-PARC neutrino beam for T2K
 - 30GeV proton synchrotron
 - 410kW with 2.5sec cycle (as of May 2016)
 - 295km baseline to Super-K
 - 2.5° off-axis v_{μ} and $\overline{v_{\mu}}$ beam peaked at 0.6GeV to search for CP violation

- J-PARC upgrade plan
 - Upgrade of Main Ring approved
 - ×2 rate with new power supply system
 - T2K: ~900kW \Rightarrow ~1.3MW by 2026
 - **×3** beam power for Hyper-K

Hyper-Kamiokande Proto-collaboration

Proto-collaboration formed in January 2015 with ~250 physicists

- Defined governance structure and international task/cost sharing
- ICRR and KEK-IPNS signed MoU for promotion of Hyper-Kamiokande

Worldwide R&D

- Alternative options for photo-sensors
 - 50cm High-QE Hybrid Photodetector (HPD)
 - Multi-PMT module
 - Texas 11" PMT for OV

WČ + magnetized µ range detector

200ton water Cherenkov test detector at Kamioka (EGADS)

<u>NuPRISM</u> Measures spectrum at 1°~ 4° off-axis

- Near Detectors
 - Upgrade plans for 280m detectors
 - Water Cherenkov detectors at 1-2 km proposed
 - Neutrino flux close to Hyper-K
 - \Rightarrow suppression of systematic uncertainties

Hyper-Kamiokande proposed timeline

- Target to start operation with 1st detector from 2026
- Sensitivity evaluated assuming staged construction strategy with the same 2nd detector starts 6 years later

Hyper-K Physics Capabilities

CP violation in neutrino sector

Projected sensitivity to δ_{CP}

Precise measurements of Δm_{32}^2 and θ_{23}

- Precision of Δm_{32}^2
 - $\delta(\Delta m_{32}^2) \sim 1.4 \times 10^{-5} eV^2$ (ref. $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} eV^2$)
 - ⇒ Sensitivity to mass hierarchy in combination with reactor
- Precision of θ_{23}
 - $\delta(\sin^2\theta_{23}) \sim 0.006 \text{ (for } \sin^2\theta_{23}=0.45)$
 - $\delta(\sin^2\theta_{23}) \sim 0.015$ (for $\sin^2\theta_{23}=0.50$)
 - \Rightarrow Good potential to determine θ_{23} octant

Atmospheric neutrino

 $\cos \Theta$

• Matter effects enhance $P(\nu_{\mu} \rightarrow \nu_{e})$ at 2-10GeV

- Normal hierarchy \Rightarrow neutrino
- Inverted hierarchy \Rightarrow anti-neutrino
- Resolve mass hierarchy in ~3 years ($\sin^2\theta_{23}=0.5$) by combination of atmospheric + beam v

exchange \Rightarrow **proton decay**

New physics BSM

 $\Gamma(p \to e^+ \pi^0)$

Total invariant mass (MeV/c²)

- **BG free** observation with high photo-coverage + HQE PMT
- **9** σ **discovery** in 10 years for $\tau_p = 1.4 \times 10^{34}$ yr (SK limit)

Proton decay search: 3σ discovery potential

Hyper-Kamiokande neutrino telescope

Supernova

- $>10^5$ events expected from SN at 10kpc
 - Probe core collapse and cooling mechanism
- 100 supernova relic neutrino events in 10yr
- Solar neutrino observation
 - MSW transition (upturn of solar spectrum)
 - Day/night asymmetry (earth matter effects)
 - Solar hep neutrinos

Summary

- Wide physics capabilities with Hyper-Kamiokande
 - Observation/measurement of CP violation in neutrino sector
 - Proton decay search with discovery potential for $10^{34} \sim 10^{35}$ years
 - Neutrino astrophysics
 - Supernova, relic SN, solar neutrino, dark matter search...
- Towards early approval of the project
 - Formed Hyper-Kamiokande international proto-collaboration
 - Promotion of the project supported by ICRR and KEK-IPNS
 - Worldwide R&D actively ongoing
 - Baseline design: high photodetector density with new HQE PMTs
 - Design Report submitted to Hyper-K Advisory Committee
 - Aim to put in next SCJ master plan and MEXT roadmap