Sterile neutrinos: a subjective review

Peter Ballett IPPP, Durham University

HQL 2016 - Center for Neutrino Physics, Virginia Tech

23rd May 2016

Overview of sterile phenomenology

3 MeV scale decays

The SM is a triumph

The SM is a triumph ... and yet BSM exists

Very weakly coupled (Intensity frontier)

Out of our current reach (Energy frontier)

We introduce $N_i \sim (1, 1, 0)$ with $i \in [1, n]$,

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \frac{1}{2} \overline{N}_i i \partial \!\!\!/ N_i \underbrace{+ \frac{M_{ij}}{2} \overline{N}_i^{\mathsf{c}} N_j}_{\mathsf{Majorana\ mass}} \underbrace{+ y_{\alpha i} \overline{L}_{\alpha} \widetilde{H} N_i + y_{\alpha i}^* \overline{N}_i \widetilde{H}^* L_{\alpha}}_{Q \text{ doublet-like Yukawa terms}}$$

Mass term

Could lead to lepton number violation (and B - L) at tree-level.

Allows *e.g.* $0\nu\beta\beta$ decay, or same-sign dilepton signatures.

Yukawa term Dirac mass terms coupling $\nu_{\rm L}$ to N.

Below EW: mass mixing effects leading to weaker-than-weak interactions between N and SM.

Neutrino mass

Below EW scale, we find an (extended) neutrino mass matrix

Dirac masses

$$M = 0 \text{ but } y \neq 0$$

$$m_{\nu} = yv$$
Pseudo-Dirac

$$M \ll y \neq 0$$

$$m_{\nu} \approx yv$$
Type I see-saw

$$M_{\nu} \approx v^{2} \frac{y^{\mathsf{T}}y}{M}$$

$$m_{\nu} \approx v^{2} \frac{y^{\mathsf{T}}y}{M}$$

$$m_{\nu} \approx v^{2} \frac{y^{\mathsf{T}}y}{M}$$

Overview of sterile phenomenology

3 MeV scale decays

4 Conclusions

• electron • up • down • neutrino

● electron ● up ● down ● neutrino

Phenomenology

- Future colliders (at the lowest scale)
- Model related processes e.g. proton decay
- Leptogenesis

Models

• (Normal) Type I see-saw

● electron ● up ● down ● neutrino

Phenomenology

- Direct production from D mesons (SHiP), at colliders
- charged Lepton Flavour Violation, LNV at colliders

Models

- Low-scale Type I see-saw
- Inverse see-saw, extended see-saw

Phenomenology

- Beam dump searches, light meson decay, peak searches
- Electroweak constraints, BBN, $0\nu\beta\beta$

Models

- Small couplings low-scale Type I see-saw
- Marginally unnatural inverse see-saw

● electron ● up ● down ● neutrino

Phenomenology

- keV dark matter, emission lines
- Kinks in β -decay spectrum, peak searches, $0\nu\beta\beta$

Models

- Symmetries, or radiative mechanisms for keV DM.
- Suppressed couplings low-scale see-saw models

See keV whitepaper 1602.04816

● electron ● up ● down ● neutrino

Phenomenology

- eV anomalies
- Oscillations (SBL, atmospherics, reactors ...)
- Cosmology $\sum_i m_i$, N_{eff} , BBN

Models

• Many mechanisms, but require suppressed couplings/fine tuning.

2 Overview of sterile phenomenology

4 Conclusions

Direct production of \boldsymbol{N}

- Meson decay (π, K, D) can produce steriles via mixing (when kinematically allowed)
- Beam dump-style experiments can use this to search for N
- They place some of the strictest bounds in this mass range

Schematic of the SHiP experiment from 1504.04956.

Atre, Han, Pascoli and Zhang, JHEP 0905:030, (2009)

Heavy neutrinos at oscillation experiments

Conventional neutrino beams should also see sterile decay events.

Asaka, Eijiama and Watanabe hep-ph/1212.1062

	PS191 19	T2K 23	MINOS 24	MiniBooNE 25	SciBooNE 26
POT	0.86×10^{19}	10^{21}	10^{21}	10^{21}	10^{21}
$(Distance)^{-2}$	$(128 \mathrm{m})^{-2}$	$(280 \mathrm{m})^{-2}$	$(1 \rm km)^{-2}$	$(541 \mathrm{m})^{-2}$	$(100 \mathrm{m})^{-2}$
Volume	$216\mathrm{m}^3$	$88\mathrm{m}^3$	$303\mathrm{m}^3$	$524\mathrm{m}^3$	$15.3\mathrm{m}^3$
Events	1	9.9	2.7	15.8	13.5

- To first approximation, fluxes scale by U^2
 - $\phi_N(E) \approx |U_{e4}|^2 \phi_\nu(E)$
- Kinematic differences
- Decay in flight enhances lower-energies

Neutrino fluxes by parent decay at microBooNE.

Heavy neutrinos at oscillation experiments

Conventional neutrino beams should also see sterile decay events.

Asaka, Eijiama and Watanabe hep-ph/1212.1062

	PS191 19	T2K 23	MINOS 24	MiniBooNE 25	SciBooNE 26
POT	0.86×10^{19}	10^{21}	10^{21}	10^{21}	10^{21}
$(Distance)^{-2}$	$(128 \mathrm{m})^{-2}$	$(280 \mathrm{m})^{-2}$	$(1 \rm km)^{-2}$	$(541 \mathrm{m})^{-2}$	$(100 \mathrm{m})^{-2}$
Volume	$216\mathrm{m}^3$	$88\mathrm{m}^3$	$303\mathrm{m}^3$	$524\mathrm{m}^3$	$15.3\mathrm{m}^3$
Events	1	9.9	2.7	15.8	13.5

- To first approximation, fluxes scale by U^2
 - $\phi_N(E) \approx |U_{e4}|^2 \phi_\nu(E)$
- Kinematic differences
- Decay in flight enhances lower-energies

Neutrino fluxes by parent decay at microBooNE.

Decay signatures

Visible decays (in minimal model) into dileptons and lepton+pion.

PB, S.Pascoli, M.Ross-Lonergan, in preparation

Short Baseline Neutrinos @ Fermilab

See SBN proposal 1503.01520

- Three detectors: SBND (LAr1-ND) (110 m), MicroBooNE (470 m) and ICARUS-T600 (600 m).
- Operating the same technology: Liquid Argon Time Projection Chambers (LAr-TPC)
- Rich physics program: sterile oscillations, neutrino cross-sections on Ar, ...

Figure reproduced from SBN Proposal 1503.01520

SBN @ Fermilab: constraints

SBN @ Fermilab: timing

ICARUS

- Heavy propagating degrees of freedom produce timing effects.
- A clear signal of heavy particle

0.500

0.100

 $M_{V_{v}}$ (GeV)

- 1 How to extend the SM?
- 2 Overview of sterile phenomenology
- 3 MeV scale decays

Conclusions

- Sterile fermions are a plausible part of the true BSM model.
- They are naturally associated with the neutrino sector. But their full parameter space is enormous, connecting them to many different phenomena.
- Decaying sterile fermions can be searched for in beam dump experiments as well as conventional neutrino beams.
- We have assessed the potential of SBN for this search: it can improve current bounds and use excellent particle reconstruction to search for difficult channels. It could also see a distinctive timing effect.

Thank you for listening!