

living.knowledge WWU Münster WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

## The KATRIN experiment

### Status and comissioning

Philipp Chung-On Ranitzsch for the KATRIN collaboration Insitute for Nuclear Physics, Westfälische Wilhelms-Universität, Münster





## (Tritium) $\beta$ -decay and neutrino mass

 $\beta$ -decay:





 $\frac{dN}{dE} = K F(E,Z) p (E_e + m_e) (E_0 - E_e) \sqrt{(E_0 - E_e)^2 - m(\bar{\nu}_e)^2}$ 

Tritium <sup>3</sup>H:  $E_0 = 18.6 \text{ keV}$  $T_{1/2} = 12.3 \text{ y}$ 

Rhenium <sup>187</sup>Re:  $E_0 = 2.47 \text{ keV}$  $T_{1/2} = 4.3 \ 10^{10} \text{ y}$ 

Holmium<sup>163</sup>Ho (EC):  
$$E_0 = 2.8 \text{ keV}$$
  
 $T_{1/2} = 4570 \text{ y}$ 

iving knowledge WWU Münster



## MAC-E Filter

#### Magnetic Adiabatic Collimation and Electrostatic Filter:



Magnetic guiding and collimation of e-

> Transform  $E_{\perp}$  to  $E_{\parallel}$ 

$$\mu = \frac{E_{\perp}}{B} = \text{const.}$$

Electrostatic field for energy analysis

- Sharp transmission depending on:
  - Emission angle
  - > Radius in at  $B_{min}$

Integrated energy resolution:

$$\Delta E = E \frac{B_{\min}}{B_{\max}}$$

3





#### KATRIN primary goal:

- Energy filter width:  $\Delta E = 0.93 \text{ eV}$
- Measure neutrino mass with a sensitivity of m(v) = 200 meV (90 % C.L.)
   KATRIN beyond m(v):
- Search for eV- and keV-scale sterile neutrinos
- Right handed currents (w/ sterile neutrinos), Lorentz invariance, ...
- Technological advances in many fields

4





#### KATRIN primary goal:

- Energy filter width:  $\Delta E = 0.93 \text{ eV}$
- Measure neutrino mass with a sensitivity of m(v) = 200 meV (90 % C.L.)
   KATRIN beyond m(v):
- Search for eV- and keV-scale sterile neutrinos
- Right handed currents (w/ sterile neutrinos), Lorentz invariance, ...
- Technological advances in many fields



## The KATRIN experiment





WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

## The KATRIN experiment



7

Philipp Chung-On Ranitzsch, IKP, Uni Münster





Windowless gaseous tritium source (WGTS)

- $T_2$  source with 1.7 x 10<sup>11</sup> Bq
- 10 m long,  $\otimes$  9 cm tube
- $T_2$  gas,  $p = 10^{-3} \dots 10^{-6}$  mbar
- Stable on 10<sup>-3</sup> level
- Arrived on Sept. 10th 2015
- Installation progressing

8





#### Differential pumping section (DPS)

• Tritium retention by 10<sup>5</sup> by

active pumping with 4 TMPs

- 5 superconducting solenoids
- Magnets set up & working at KIT
- Beam line assembly finishing up
- Integration into T<sub>2</sub> infrastructure





#### Cryogenic pumping section (CPS)

- Tritium retention >  $10^7$
- Cryo-pumping of residual gas
- 7 magnets @ 5.6 T
- Delivered to KIT on July 30, 2015
- Cool down is ongoing (currently <200 K)</li>



## The KATRIN experiment





Spectrometer and detector section Tandem spectrometer setup Pre-Spectrometer

- Pre-filter  $10^{10} e^{-}/s \Rightarrow 10^{3} e^{-}/s$
- Used for R&D for Main Spec Main Spectrometer
- Main energy analysis
- $\Delta E = 0.93 \text{ eV}$

#### Focal plane detector (FPD)

- 148 Pixel Si-PIN diode
- Δ*E* ~ 2 keV
- Everything on site

## Spectrometer and Detector commissioning



Two phases: SDS-I 2013; SDS-II(a+b): late 2014 to mid 2015

#### Subsystems:

Tests:

Main spectrometer Focal plane detector Angular selective e<sup>-</sup>-source Hardware, Software, Slow Control Transmission Properties Background

a



## Spectrometer and Detector commissioning

Electron transmission properties

Mono-energetic, angular selective

electron gun

• fast non-adiabatic acceleration of  $e^$ in non-parallel  $\vec{E}$  and  $\vec{B}$  fields

Test the effect inside MS of

- electric potential
- magnetic field







## Spectrometer and Detector commissioning

#### **Electron Optics**

Angular selectivity shown

- Width:  $\Delta E \approx 1.2 \text{ eV} \approx E \frac{B_{\min}}{B_{\max}} = 5 \text{ T}$
- Consistent with calculation



## Spectrometer and Detector commissioning

#### **Electron Optics**

Angular selectivity shown

- Width:  $\Delta E \approx 1.2 \text{ eV} \approx E \frac{B_{\min}}{B_{\max} = 5 \text{ T}}$
- Consistent with calculation Potential drop towards center
- $\Delta U = 0.3 \dots 1.0 V$
- Consistent with simulations
   Detailed analysis ongoing



The KATRIN experiment 16

## Spectrometer and Detector commissioning

#### Background processes



## Spectrometer and Detector commissioning

#### Background processes





## Spectrometer and Detector commissioning

#### Background processes

- Most known and understood background sources excluded
- Remaining background level: ~312±3 mcps (design goal 10 mcps)
- Current working theory:

Internal radioactivity + neutral messenger particle

Third commissioning phase in autumn





# Systematics

#### 5 major systematics contributions

#### Final states: new evaluation coming

(A. Saenz et al. PRL 84 (2000) 242)

#### Energy loss function: within specifications

(angular defined e-gun, paper in internal review)

#### Column density: Tests during STS III

(angular defined e-gun, Electron rate measurements, Raman spectroscopy...)

#### HV variations: within specifications

(Precision HV dividers, monitor spectrometer, Active post-regulation)

#### Elastic scattering

| source of<br>systematic shift                   | achievable /<br>projected accuracy                                                                                                                                                                                                                         | systematic shift $\sigma_{\rm syst}(m_{\rm v}^2) (10^{-3}  {\rm eV}^2)$ |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| description of final states                     | f < 1.01                                                                                                                                                                                                                                                   | < 6                                                                     |
| $T^-$ ion concentration                         | $< 2 \cdot 10^{-8}$                                                                                                                                                                                                                                        | < 0.1                                                                   |
| unfolding of energy loss func. $f(\varepsilon)$ |                                                                                                                                                                                                                                                            | < 6                                                                     |
| monitoring of column density $\rho d$           | $\begin{split} \Delta T/T &< 2 \cdot 10^{-3} \\ \Delta \Gamma/\Gamma &< 2 \cdot 10^{-3} \\ \Delta \varepsilon_T/\varepsilon_T &< 2 \cdot 10^{-3} \\ \Delta p_{\rm inj}/p_{\rm inj} &< 2 \cdot 10^{-3} \\ \Delta p_{\rm ex}/p_{\rm ex} &< 0.06 \end{split}$ | $< \frac{\sqrt{5} \cdot 6.5}{10}$                                       |
| background slope                                | $< 0.5\mathrm{mHz/keV}$ (Troitsk)                                                                                                                                                                                                                          | < 1.2                                                                   |
| HV variations                                   | $\Delta HV/HV < 3\mathrm{ppm}$                                                                                                                                                                                                                             | < 5                                                                     |
| WGTS potential variations                       | $\varDelta U < 10{\rm meV}$                                                                                                                                                                                                                                | < 0.2                                                                   |
| WGTS mag. field variations                      | $\varDelta B_{\rm S}/B_{\rm S} < 2\cdot 10^{-3}$                                                                                                                                                                                                           | < 2                                                                     |
| elastic $e^ T_2$ scattering                     |                                                                                                                                                                                                                                                            | < 5                                                                     |
| identified syst. uncertainties                  | $\sigma_{ m sys, \ tot} = \sqrt{\sum \sigma}$                                                                                                                                                                                                              | $\frac{2}{\text{sys}} \approx 0.01  \text{eV}^2$                        |



## Commissioning of whole beam line

All sub-systems come online right about now

Combined commissioning:

- Interaction of different sub-systems
- Guide electrons from start to end
- Start with inactive source gases (H<sub>2</sub>, D<sub>2</sub>)
  - Proposals in internal review
- Slowly increase tritium content (point of no return)

| AT Real                                                                             |
|-------------------------------------------------------------------------------------|
| KATRIN-STS                                                                          |
| <b>Operational Readiness Phase III</b>                                              |
| Measurement Proposals<br>for the inactive (non-tritium)<br>commissioning phase Illa |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
|                                                                                     |
| version 1.1<br>24 Eeb. 2016                                                         |

Philipp Chung-On Ranitzsch, IKP, Uni Münster





- Complete beam line on site since Sept. 2015
- Final assembly, site acceptance tests and commissioning ongoing
- Successful SDS commissioning phases already done  $\rightarrow$  more to come
- Combined commissioning of whole system in late-2016
- First light (tritium) runs in 2017



Philipp Chung-On Ranitzsch, IKP, Uni Münster