

The COMET Experiment

- 1. Introduction
- 2. COMET Overview
- 3. Current Status of Phase-I
- 4. Prospects for Phase-II
- 5. Summary

Hisataka Yoshida

for the COMET Collaboration

Osaka University

23rd. May. 2016 @ The XIIIth International Conference on Heavy Quarks and Leptons in Virginia

Charged Lepton Flavor Violation

The establishment of the **Standard Model** and the observation of the **Neutrino Oscillation** worked-out very much in the particle physics.

However, There are still mysteries like

- dark matter ?? / dark energy?
- why does our universe consist of dominant "matter" ? (not anti-matter)
- absolute neutrino mass ? why so small ?

charged Lepton Flavor Violation !? (cLFV)

- → Processes of the CLFV
 - highly prohibited in the SM
 - with Neutrino Oscillation
 - (= no/less SM background)
 - are very rare events/decays
 - not found yet !
 - if found, immediately indicates something beyond the SM

That's why "CLFV" is interesting!

OMET

beyond the SM with CLFV

e.g. Branching ratio of " $\mu \rightarrow e \gamma$ " calculated in the SM with Neutrino Oscillation is

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 < 10^{-54} \quad \leftarrow \text{impossible to detect} \\ \text{in the current technology}$$

No background from the SM, so this is advantage for New Physics search

Many models such as SUSY, little Higgs, Heavy Neutrino (See-Saw), Extra Dimension etc. beyond the SM predict the CLFV processes in ~TeV scale, corresponding to the branching ratio of 10⁻¹⁴⁻¹⁷ in the muon decay.

CLFV search is a strong probe for various New Physics!

CLFV Search with Muon

suitable for "coincidence" experiments

Pulsed Muon Beam

DC Muon Beam

suitable for "*µ*-e conversion" experiments

COMET Experiment

Search for " μ -e conversion" in Japan at J-PARC hadron hall

Experimental Goal :

$$\begin{split} B(\mu^- + Al \to e^- + Al) &= 2.6 \times 10^{-17} \text{ (S.E.S)} \\ B(\mu^- + Al \to e^- + Al) &< 6 \times 10^{-17} \text{ (90\% C.L.)} \end{split}$$

This goal is 10,000 times improvement

from the current limit given by the SIDRUM-II experiment (2006).

Current World Limit :

$$B(\mu^- + Au \to e^- + Au) < 7 \times 10^{-13}$$

Important Keys for COMET

1. Increase of Muon Intensity with an Innovative Pion Capture System

MuSIC in RCBP-Osaka University demonstrated more than x 10³ improvement of pion capture efficiency with larger target and surrounding superconducting solenoid to capture pions.

2. Reduction of Background by Pulsed-Beam and Long-Transport Line

COMET at J-PARC E21

OMET

The COMET Collaboration

R. Abramishvili¹¹, G. Adamov¹¹, R. Akhmetshin^{6,31}, V. Anishchik⁴, M. Aoki³², Y. Arimoto¹⁸, I. Bagaturia¹¹, Y. Ban³, A. Bondar^{6,31}, Y. Calas⁷, S. Canfer³³, Y. Cardenas⁷, S. Chen²⁸, Y. E. Cheung²⁸, B. Chiladze³⁵, D. Clarke³³, M. Danilov^{15,26}, P. D. Dauncey¹⁴, W. Da Silva²³, C. Densham³³, G. Devidze³⁵, P. Dornan¹⁴, A. Drutskoy^{15,26}, V. Duginov¹⁶, L. Epshteyn^{6,30,31}, P. Evtoukhovich¹⁶ G. Fedotovich^{6,31}, M. Finger⁸, M. Finger Jr⁸, Y. Fujii¹⁸, Y. Fukao¹⁸, E. Gillies¹⁴, D. Grigoriev^{6, 30, 31}, K. Gritsay¹⁶, E. Hamada¹⁸, R. Han¹, K. Hasegawa¹⁸, I. H. Hasim³², O. Hayashi³², Z. A. Ibrahim²⁴, Y. Igarashi¹⁸, F. Ignatov^{6, 31}, M. Iio¹⁸, M. Ikeno¹⁸ K. Ishibashi²², S. Ishimoto¹⁸, T. Itahashi³², S. Ito³², T. Iwami³², X. S. Jiang², P. Jonsson¹⁴, T. Kachelhoffer⁷, V. Kalinnikov¹⁶, F. Kapusta²³, H. Katayama³² K. Kawagoe²², N. Kazak⁵, V. Kazanin^{6,31}, B. Khazin^{6,31}, A. Khvedelidze^{16,11} T. K. Ki¹⁸, M. Koike³⁹, G. A. Kozlov¹⁶, B. Krikler¹⁴, A. Kulikov¹⁶, E. Kulish¹⁶, Y. Kuno³² Y Kuriyama²¹, Y. Kurochkin⁵, A. Kurup¹⁴, B. Lagrange^{14,21} ***** Lee¹², H. B. Li², W. G. Li², R. P. Litchfield^{14, 38}, T. Loan²⁹ /// idze¹¹, P. Loveridge³³, G. Macharashvili³⁵, Y. Makida¹⁸, , Y. Matsumoto³², A. Melnik⁵, T. Mibe¹⁸, S. Mihara¹⁸, . A. Mohamed Kamal Azmi²⁴, A. Moiseenko¹⁶, Y. Mori²¹ ³⁸, Y. Nakai²², T. Nakamoto¹⁸, Y. Nakazawa³², J. Nash¹⁴ ze³⁵, H. Nishiguchi¹⁸, T. Numao³⁶, J. O'Dell³³, T. Ogitsu¹⁸, $\frac{1}{2^{2}}$, K. Okamoto³², C. Omori¹⁸, T. Ota³⁴, J. Pasternak¹⁴, C. Plostinar³³, ariadov⁴⁵, A. Popov^{6,31}, V. Rusinov^{15,26}, B. Sabirov¹⁶, N. Saito¹⁸, noto³², P. Sarin¹³, K. Sasaki¹⁸, A. Sato³², J. Sato³⁴, Y. K. Semertzidis^{12,17}, yo²², D. Shoukavy⁵, M. Slunecka⁸, A. Straessner³⁷, D. Stöckinger³⁷, DUBNA M. Sugano¹⁸, Y. Takubo¹⁸, M. Tanaka¹⁸, S. Tanaka²², C. V. Tao²⁹, E. Tarkovsky^{15,26}. Y. Tevzadze³⁵, T. Thanh²⁹, N. D. Thong³², J. Tojo²², M. Tomasek¹⁰, M. Tomizawa¹⁸, N. H. $Tran^{32}$, H. $Trang^{29}$, I. $Trekov^{35}$, N. M. $Truong^{32}$, Z. $Tsamalaidze^{16,11}$ N. Tsverava^{16,35}, T. Uchida¹⁸, Y. Uchida¹⁴, K. Ueno¹⁸, E. Velicheva¹⁶, A. Volkov¹⁶, V. Vrba¹⁰, W. A. T. Wan Abdullah²⁴, M. Warren³⁸, M. Wing³⁸, M. L. Wong³², T. S. Wong³², C. Wu^{2, 28}, H. Yamaguchi²², A. Yamamoto¹⁸, T. Yamane³², Y. Yang²², W. Yao², B. K. Yeo¹², H. Yoshida³², M. Yoshida¹⁸, Y. Yoshii¹⁸, T. Yoshioka²², Y. Yuan², Yu. Yudin^{6,31}, J. Zhang², Y. Zhang², K. Zuber³⁷ + more

OMET

µ - e conversion search

OMET e

8

- 1. Generate "muonic atom" by muon stopping at the target
- 2. Measure emitted electron momentum from muonic atom
 - A. spectrum of decay in orbit is continuous with sharp edge at 52.8 MeV
 - B. **µ-e conversion signal** is a mono-energetic ~ 105 MeV peak
 - (neutrinoless muon decay \rightarrow emitted electron has all energy of the decay)
- 3. Spectroscopic search for μ -e conversion signal

Strategy of COMET

Intrinsic Background

DIO spectrum has longer tail up to ~105 MeV

 \rightarrow require high momentum resolution to separate the tail and signal Beam-related Background

Radiative pion capture, muon decay in flight and so on

 \rightarrow require pulsed beam and excellent proton extinction < 10^9

To achieve our target sensitivity, we take staging approach.

COMET Phase-I

COMET Phase-I Goal :

- With shorter muon transport solenoid (90° bending)
- Not-full power operation of proton beam (3.2 kW)
- Quick and Low-Cost Construction to get result earlier
 - under construction since ~2013, budget funded (not fully).
 - expecting to start in 2018/2019
- Containing R&D for Phase-II
 - Background Measurement
 - Detector Development
- Aiming Stage-2 Approval in J-PARC soon (in summer 2016)
- Technical Design Report (2016) is available online. <u>http://comet.kek.jp/</u>

COMET Phase-I Detectors

11

Cylindrical Drift Chamber

Solenoid yoke

COMET CDC

- Surrounding target
- 19 layers structure
 ~5,000 sense wires
 ~15,000 field wires
- All stereo layers
- He base gas (He : $iC_4H_{10} = 10 : 90$)

Detector solenoid coils

- Study of prototype chamber is done (still ongoing)
 - basic performance study was done
 - spatial resolution < 200 $\,\mu$ m
 - ongoing final test with 1T magnetic field in KEK
- Design was fixed based on Belle-II CDC with modification for COMET
- Construction started in 2014, now still underway

* Many thanks for Belle-II CDC group to help us!

Cylindrical drift chamber (CDC

CDC Construction

Wiring in KEK

CFRP outer/inner wall

Wiring Completed!

The inner wall will be installed soon,

and the CDC commissioning will start in summer 2016.

nics and DAQ

OMET e

14

ECBE (semi-copy of Belle-II CDC read-out)

- · 48ch read-out per board
- · 960MHz TDC and 10bit ADC
- · 1Gbps SiTCP communication
- · 128 RECBEs mass production done!
- performance test ongoing

FCT board

- intermediate board
 between trigger and
 various read-out
- prototyping done
- Tracking Trigger - triggering with track finding to reduce trigger rate - under development

Straw Tracker

Prototype Straw Station

Spatial Resolution

- Tracker with Straw-tube
 - 9.75mm diameter
 - PET 20 μ m thickness
 - 2-Dimensional config.
 - a station has 2x2 layers
 - 5 stations for Phase-I
- \cdot Operation in vacuum

to improve momentum res.

• R&D ongoing

ROESTI : read-out electronics (developed for COMET, DRS4)

Resolution

40 60 80 100 120 140 160 180 200

 χ^2 / ndf

stq__{YSO}

const

noiseyso

 χ^2 / ndf

stogso

const

noise

P_{beam} (MeV/c)

Corner

6.8

6.6

5.8

5.6

GSO

LYSO

ш 6.4

6.

(%)

set up of beam test

performance test results

(mm)

 $\sigma_{\rm B}$

9.5

8.5

7.5

6.5

GSO

LYSO

80

60

1.043/2

1.933/2

35.23± 8.423

3.705±0.1828

 40.2 ± 2.467

4.282±0.2212

0.0002921± 3105

0.04484± 1.218e+04

Position Resolution

100

120

140 160

P_{beam} (MeV/c)

con

con nois

Construction of COMET Hall

17

COMET Hall next to Hadron Hall Installation Yard **Beam Room Cooling Equipment** Installation Door will be installe Installation Hatch Door to Exp. Room Beam Room **Proton Beam Experiment Room Beam Room** (View from Door) (view from Installation Yard) **Installation Hatch** Experiment Room Hole for proton beamline Beam Room Beam Dump (Iron Blocks will be located)

Construction of Solenoid

Pion capture solenoid system

- The delivery of aluminum stabilized superconductors is being made (10 km in 2013, 12 km in 2014, and 8 km in 2015).
- TS1a coil winding is made by a new winding machine.
- CS and MS coils will be made in 2016

Muon transport solenoid system

 The muon transport system (TS2-TS3) has been constructed and delivered by Toshiba Co. in 2015

Detector solenoid system

 under construction, will be completed (maybe) in 2016 TS1a coil winding

Software Framework "ICEDUST"

The framework "ICEDUST" has almost been ready in 2015. Still need to be implemented more, such as detector response. The simulation and analysis is/will be studied with ICEDUST now. Mass MC events generation is ongoing for more higher statistics study.

Sensitivity Estimation in COMET Phase-I

Signal Acceptance

Signal Sensitivity

 $B(\mu^{-} + Al \to e^{-} + Al) \sim \frac{1}{N_{\mu} \cdot f_{cap} \cdot A_{e}}$

- f_{cap} = 0.6
- $A_e = 0.043$
- $N_{\mu} = 1.23 \times 10^{16} \text{ muons}$

Muon intensity

 $B(\mu^{-} + Al \to e^{-} + Al) = 3.1 \times 10^{-15} \text{ (S.E.S)}$ $B(\mu^{-} + Al \to e^{-} + Al) < 7 \times 10^{-15} \text{ (90\%C.L.)}$

about 0.00052 muons stopped/proton

With 0.4 μ A, a running time of about 110 days is needed.

toward COMET Phase-II

proton

21

In Phase-I setup

- 3.2 kW proton beam operation
- 90 degree muon transport solenoid
- CDC in a spectrometer solenoid

- 56 kW proton beam
- 180 degree transport solenoid for muon
- 180 degree spectrometer solenoid for electron

stopping target

- StrawECAL detector

S-Shape Design in Phase-II

Phase-II Detector

- \cdot 180° curved solenoid for higher momentum resolution in the muon/electron transport
- Less dense detectors (Straw Tracker and ECAL in vacuum)

Phase-II Goal : (in a year operation)

$$B(\mu^{-} + Al \to e^{-} + Al) = 2.6 \times 10^{-17} \text{ (S.E.S)}$$

$$B(\mu^{-} + Al \to e^{-} + Al) < 6 \times 10^{-17} \text{ (90\%C.L.)}$$

Status of COMET Phase-Il

- Development of Phase-I StrawECAL is essentially R&D for Phase-II
- ICEDUST framework enables feasible study for Phase-II

field map design for Phase-II

simulation setup for Phase-II

 Working for further foundation in Phase-II, and negotiating with J-PARC facility for operation schedule for Phase-II

COMET Timeline

	JFY	2014	2015	2016	2017	2018	2019	2020	2021	2022
COMET Phase-I	construction									
	data taking									
COMET Phase-II	construction									
	data taking									
COMET Phase-I : 2018 ~							COMET Phase-II : 2021~			
S.E.S. ~ 3x10 ⁻¹⁵							S.E.S. ~ 3x10 ⁻¹⁷			
(for 110 davs							(for 2×10^7 sec			
with 3.2 kW proton beam)			n)			with	n 56 kW proton beam)			

Summary

- OMET
- COMET is an experiment search for " μ -e conversion" at J-PARC
 - aiming improvement the sensitivity x 10,000 better than the past
 - staging approach called Phase-I (under construction) / Phase-II
- COMET Phase-I is now under construction
 - aiming improvement the sensitivity x 100 better than the past

Phase-I Goal : (in 110 days operation)

$$B(\mu^{-} + Al \to e^{-} + Al) = 3.0 \times 10^{-15} \text{ (S.E.S)}$$

$$B(\mu^{-} + Al \to e^{-} + Al) < 7 \times 10^{-15} \text{ (90\%C.L.)}$$

- CDC detector for physics search will be constructed soon
- the other system is also under construction
- expecting to start in 2018/2019, stay tuned! http://comet.kek.jp/
- R&D for **COMET Phase-II** is underway.
 - expecting to start in 2021/2022, aiming further higher sensitivity

Backup

27

Biography of " μ -e conversion" search OMET

Phy. Rep., 432, 2 (2013)

Table 4

Ε

History of $\mu N \rightarrow eN$ conversion experiments. Lagarrigue and Peyrou (1952) saw $\approx 1\sigma$ signals for Sn and Sb; we have averaged their results and set an approximate limit. We thank E. Craig Dukes for help in the preparation of this Table.

Year	90% Limit	Lab/Collaboration	Reference	Material
1952	1.0×10^{-1}	Cosmic Ray	Lagarrigue and Peyrou (1952)	Sn, Sb
1955	$5.0 imes10^{-4}$	Nevis	Steinberger and Wolfe (1955)	Cu
1961	$4.0 imes 10^{-6}$	LBL	Sard et al. (1961)	Cu
1961	$5.9 imes10^{-6}$	CERN	Conversi et al. (1961)	Cu
1962	2.2×10^{-7}	CERN	Conforto et al. (1962)	Cu
1964	2.2×10^{-7}	Liverpool	Bartley et al. (1964)	Cu
1972	$2.6 imes10^{-8}$	SREL	Bryman et al. (1972).	Cu
1977	$4.0 imes 10^{-10}$	SIN	Badertscher et al. (1977)	S
1982	$7.0 imes 10^{-11}$	SIN	Badertscher et al. (1982)	S
1988	4.6×10^{-12}	TRIUMF	Ahmad et al. (1988)	Ti
1993	4.3×10^{-12}	SINDRUM II	Dohmen et al. (1993)	Ti
1995	$6.5 imes 10^{-13}$	SINDRUM II	Eggli (1995)	Ti
1996	4.6×10^{-11}	SINDRUM II	Honecker et al. (1996)	Pb
2006	$7.0 imes 10^{-13}$	SINDRUM II	Bertl et al. (2006)	Au

T<u>he current limit is given by SINDRUM-II experiment, but the experiment</u> started in 1980s, so some experiments are planed to dipelate the limit very soon. quadrupole magnet Dee Me and COMET experiments are planed apple magnet construction. concrete block S//j

SINDRUM-II at PSI

PSI muon beam intensity ~ $10^{7-8}/\text{sec}$ beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed. But, it could not work at a high rate.

Published Results (2006)

 $B(\mu^{-} + Au \to e^{-} + Au) < 7 \times 10^{-13}$

Class 1 events: prompt forward removed

Current World Best Limit :

Proton Beam at J-PARC

29

- A pulsed proton beam is needed to reject beam-related prompt background.
- Time structure required for proton beams.
 - Pulse separation is ~ 1µsec or more (muon lifetime).
 - Narrow pulse width (<100 nsec)

- Pulsed beam from slow extraction.
 - fill every other rf buckets with protons and make slow extraction
 - spill length (flat top) ~ 0.7

(simulation result) CDC Momentum Resolution

about	200	keV/c
ac	hieve	ed.

σ of the core Gaussian at the high momentum side SigH	195 keV/c
σ of the core Gaussian at the high momentum side SigL	226 keV/c
Fraction in the tail distribution TFH	39%
σ of the tail Gaussian at the high momentum side \texttt{TSigH}	$365 \ \mathrm{keV}/c$
σ of the tail Gaussian at the low momentum side \texttt{TSigL}	$642 \ \mathrm{keV}/c$

OMET

Backgrounds List

Int	rinsic physics backgrounds	
1	Muon decay in orbit (DIO)	Bound muons decay in a muonic atom
2	Radiative muon capture (external)	$\mu^- + A \to \nu_\mu + A' + \gamma,$
		followed by $\gamma \to e^- + e^+$
3	Radiative muon capture (internal)	$\mu^- + A \to \nu_\mu + e^+ + e^- + A',$
4	Neutron emission after	$\mu^- + A \to \nu_\mu + A' + n,$
	after muon capture	and neutrons produce e^-
5	Charged particle emission	$\mu^- + A \to \nu_\mu + A' + p \text{ (or } d \text{ or } \alpha),$
	after muon capture	followed by charged particles produce e^-

Beam related prompt/delayed backgrounds

6	Radiative pion capture (external)	$\pi^- + A \to \gamma + A', \ \gamma \to e^- + e^+$	
7	Radiative pion capture (internal)	$\pi^- + A \to e^+ + e^- + A'$	
8	Beam electrons	e^{-} scattering off a muon stopping target	
9	Muon decay in flight	μ^- decays in flight to produce e^-	
10	Pion decay in flight	π^- decays in flight to produce e^-	
11	Neutron induced backgrounds	neutrons hit material to produce e^-	
12	\overline{p} induced backgrounds	\overline{p} hits material to produce e^-	
Otl	Other backgrounds		
14	Cosmic-ray induced backgrounds		
15	False tracking		

Table 8: A list of potential backgrounds for a search for $\mu^- N \to e^- N$ conversion.

Background Estimation

OMET

Table 19.8: Summary of the estimated background events for a single-event sensitivity of 3×10^{-15} in COMET Phase-I with a proton extinction factor of 3×10^{-11} .

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All $(*)$ Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed Beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Anti-proton induced backgrounds	0.0012
Others	$Cosmic rays^{\dagger}$	< 0.01
Total		0.032

[†] This estimate is currently limited by computing resources.

RCNP-MuSIC

Measurements on June 21, 2011 (26 pA)

preliminary

MuSIC muon yields μ^+ : 3x10⁸/s for 400W μ^- : 1x10⁸/s for 400W

cf. 10⁸/s for 1MW @PSI Req. of x10³ achieved...

Present Limit and Future Prospects

process	present limit	future		
$\mu \rightarrow e\gamma$	<5.7 x 10 ⁻¹³	<10-14	MEG at PSI	
$\mu \rightarrow eee$	<1.0 x 10 ⁻¹²	<10 ⁻¹⁶	Mu3e at PSI	
$\mu N \rightarrow eN$ (in Al)	none	<10 ⁻¹⁶	Mu2e / COMET	
$\mu N \rightarrow eN$ (in Ti)	<4.3 x 10 ⁻¹²	<10 ⁻¹⁸	PRISM	
$\tau \rightarrow e\gamma$	<1.1 x 10 ⁻⁷	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB	
τ→eee	<3.6 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB	
$\tau \rightarrow \mu \gamma$	<4.5 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB	
$\tau \rightarrow \mu \mu \mu$	<3.2 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB/LHCb	

OMET

