Recent results on CPV and hadronic decays of B mesons at Belle

Mikihiko Nakao (KEK)

mikihiko.nakao@kek.jp

2016.05.26 XIIIth International Conference on Heavy Quarks and Leptons Blacksburg, Virginia

• Golden Mode ($B ightarrow J/\psi K_S$): phase in B^0 - \overline{B}^0 mixing

- Very clean, only tiny SM penguin pollution so far neglected
- NP phase in mixing if any cannot be distinguished
- Small SM pollution should eventually be problem (O(1–2%))

Overconstraint of UT triangle

- All angles and sides can be measured
- CPV parameters from other means: V_{ub} , ϕ_3 (tree, SM)

Success of SM:

overconstrained unitarity triangle

However...

• Still problem in V_{ub} \clubsuit It's only ϕ_1 and $\Delta m_d / \Delta m_s$ giving high precision • Second ϕ_1 solution is not yet excluded with high CL Nothing precludes O(10%) beyond the SM physics(!)

Outline

3 topics today

- ✓ sin2 ϕ_1 in $B^0 \to D^{(*)}_{~~P}h^0$ with Belle+BaBar data
 - **2** [PRL 115, 121604 (2015)]
- \checkmark sin2 ϕ_1 & cos2 ϕ_1 in $B^0 \rightarrow D^{(*)}h^0$, $D \rightarrow K_S \pi \pi$ 🔁 [preliminary, NEW!]
- ✓ First observation of $B^0 \rightarrow \psi(2S)\pi^0$ IPRD 93, 031101(R) (2016)]
- **Overflow** (in backup slides)

 - Evidence for $B^0 \to \eta \pi^0$ **2** [PRD 92, 011101(R) (2015)]

 $-\phi_2$ from $B^0 \to \rho^+ \rho^-$ [PRD 93, 032010 (2016)]

All results based on full dataset of 772M BB (+471M from BaBar)

$$(b \rightarrow c \text{ tree})$$

$$\Rightarrow b \rightarrow c \overline{c} \overline{c} S \qquad B \rightarrow J/\psi K_{S}$$

$$\Rightarrow b \rightarrow c \overline{c} \overline{d} \qquad B \rightarrow J/\psi \pi^{0}, \psi(2S)\pi^{0}$$

$$b \rightarrow c \overline{u} S \qquad B \rightarrow DK$$

$$\Rightarrow b \rightarrow c \overline{u} d \qquad B \rightarrow D\pi$$

$$(b \rightarrow u \text{ tree, suppressed})$$

$$b \rightarrow u \overline{c} S \qquad B \rightarrow DK$$

$$b \rightarrow u \overline{c} d \qquad B \rightarrow D\pi$$

$$b \rightarrow u \overline{u} S \qquad B \rightarrow K\pi \text{ tree}$$

$$\Rightarrow b \rightarrow u \overline{u} d \qquad B \rightarrow \pi\pi$$

$$(b \rightarrow s \text{ penguin})$$

$$\Rightarrow b \rightarrow s \overline{c} c \qquad B \rightarrow J/\psi K_{S}$$

$$b \rightarrow s \overline{s} S \qquad B \rightarrow \phi K$$

$$b \rightarrow s \overline{u} u \qquad B \rightarrow K\pi \text{ penguin}$$

$$(b \rightarrow d \text{ penguin, suppressed})$$

$$\Rightarrow b \rightarrow d \overline{c} c \qquad B \rightarrow J/\psi \pi^{0} \psi(2S)\pi^{0}$$

$$b \rightarrow d \overline{s} S \qquad B \rightarrow KK \text{ penguin}$$

$$\Rightarrow b \rightarrow d \overline{u} u \qquad B \rightarrow \pi\pi \text{ penguin}$$

$$\Rightarrow b \rightarrow d \overline{u} u \qquad B \rightarrow \pi\pi \text{ penguin}$$

(ϕ_1 golden mode) (ϕ_1) (ϕ_3 , tree only) (ϕ_1 , ϕ_3)

(ϕ_3) (ϕ_1 , ϕ_3 , suppresed)

 (ϕ_2)

(ϕ_1 pollution)

Lots of info to disentangle many unknowns

(ϕ_1 pollution)

 $(\phi_2 \text{ isospin analysis})$ $(\phi_2 \text{ isospin analysis})$

$\phi_1 - B^0 \to D_{cp}^{(*)} h^0$

BaBar and Belle Collaborations, Phys. Rev. Lett. 115, 121604 (2015) (see also talk by Markus Röhrken at EPS-HEP 2015 conference) $m{B}
ightarrow m{D}_{m{c}m{p}}^{(*)}m{h}^0$

Decay modes

- $D_{cp} D^0 / \overline{D}^0$ decaying into $K^+ K^-$ (CP+); $K_S \pi^0$, $K_S \omega$ (CP-)
- $D_{cp}^* \rightarrow D_{cp} \pi^0$ (still CP eigenstate)
- h^0 neutral meson: π^0 , η , ω (CP—)
- $D_{cp}^{(*)}h^0$ final states are also CP eigenstates (CP+ or -)
- Time-dependent CPV analysis gives $S = -(-1)^{CP} \sin 2\phi_1$ But not only "yet-another" CPV measurement for ϕ_1 tree diagram only and hence penguin pollution free

(CPV in *D* decay is much smaller and neglected)

Time-dependent Analysis for $B \rightarrow D_{cp}^{(*)}h^0$

- Average $\Delta z \sim 200 \mu m$ for Belle, $\sim 250 \mu m$ for BaBar
- Standard time-dependent CPV measurement, but
 - Vertex extrapolated from $K_S o \pi^+\pi^-$ for $h^0 o \gamma\gamma$
 - Trajectory from displaced D⁰ vertex with IP constraint
 - ullet Resolution $\sim 100 \mu$ m, depending on final state
- Standard flavor tagging algorithm

First Belle-BaBar Joint Analysis

- Motivation small branching fraction ($O(10^{-6})$)
- Difficulty event vertex resolution and tagging efficiency
- Analysis who joined BaBar from Belle and working on both
 - Continuum background event shape variables (NN)

• Beam-energy constrained mass – $M_{bc} = \sqrt{(E_{beam}^*)^2 - (p_B^*)^2}$

Principle of the Combined Analysis

Combined by maximizing the joint log-likelihood function

$$\ln \mathcal{L} = \sum_{i} \ln \mathcal{P}_{i}^{\text{BaBar}} + \sum_{j} \ln \mathcal{P}_{j}^{\text{Belle}}$$

PDFs with experiment specific resolution functions

$$\mathcal{P}^{\exp} = \sum_{k} f_{k} \int [P_{k}(\Delta t')R_{k}(\Delta t - \Delta t')]d\Delta t'$$

[k: signal or background index, P_k : signal or background model, R_k : resolution function]

- Event/experiment dependent flavor tagging quality q
- Common signal model

$$P_{\text{sig}}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{\frac{-|\Delta t|}{\tau_{B^0}}} [1 + q(\mathcal{S}\sin(\Delta m\Delta t) - \mathcal{C}\cos(\Delta m\Delta t))]$$

 $-(-1)^{CP}S = \sin 2\phi_1$ and C = 0 in the SM

Background determined from M_{bc} sidebands

 $B \rightarrow D_{cp}^{(*)} h^0$ Results

Full Belle II data will allow to address O(10%) NP effect

$B^0 \rightarrow D^{(*)0} h^0$, $D \rightarrow K_S \pi^+ \pi^-$

Belle Collaborations, preliminary (first shown today)

$B^0 ightarrow D^{(*)0} h^0$, $D ightarrow K_S \pi^+ \pi^-$

- Similar to $B \to D_{cp}^{(*)} h^0$, but $D \to K_S \pi^+ \pi^-$ is not a CP eigenstate
 - Mix of e.g. $K^{*-}\pi^+$ (favored), $K_S \rho^0$ (CP), $K^{*+}\pi^-$ (DCS)
 - Many K resonances: $K^*(892)$, $K_0^*(1430)$, $K_1(1270)$, $K_2^*(1430)$, ...
 - Dalitz plot provides rich and measureable strong phase structure

🔵 Dalitz model

- Sum of known resonances, relative amplitude and phase from a fit to $D^{*+} \rightarrow D^0 \pi^+$
 - (unbinned, model-dependent)
 - |amplitude|² from $B^- \rightarrow D^0 \pi^-$, phase from coherent $\psi(3770) \rightarrow D^0 \overline{D}{}^0$ into $(D \rightarrow K_S \pi^+ \pi^-)^2$ and CP-tagged modes by CLEO (binned, model-independent)

Time-dependent Dalitz analysis

 $P_{\text{sig}}(m_{+}^{2}, m_{-}^{2}, \Delta t) \propto e^{-\frac{|\Delta t|}{\tau_{B}}} \left[1 + q_{B}(\mathcal{A}(m_{+}^{2}, m_{-}^{2}) \cos(\Delta m_{B} \Delta t) + \mathcal{S}(m_{+}^{2}, m_{-}^{2}) \sin(\Delta m_{B} \Delta t)) \right]$ $\mathcal{S}(m_{+}^{2}, m_{-}^{2}) \propto \text{Im}[f(m_{-}^{2}, m_{+}^{2})f^{*}(m_{+}^{2}, m_{-}^{2})e^{2\phi_{1}}]$

Sensitive directly to ϕ_1 , or both sin $2\phi_1$ and cos $2\phi_1$ [Bondar,Gershon,Krokovny:PLB624,1(2005)]

Combination of widely used techniques

- D Dalitz plot analysis developed for ϕ_3
- Time-dependent Dalitz to measure ϕ_1^{eff} in $b \to s$ penguin ($B \to K_S \pi \pi$)

Previous model-dependent analysis

- Belle (386M *BB*) [PRL 97, 081801 (2006)]
- BaBar (383M *BB*) [PRL 99, 231802 (2007)]
- Exclusion of second ϕ_1 solution only by 98% and 86% CL

New analysis with full Belle data (772M $B\overline{B}$)

Model-independent binned analysis

$$N_{i}(\Delta t, \phi_{1}) = h_{2}e^{-\frac{|\Delta t|}{\tau_{B}}} \left[1 + Q_{B}\frac{K_{i} - K_{-i}}{K_{i} + K_{-i}} \cos(\Delta m_{B}\Delta t) + 2Q_{B}\xi_{h^{0}}(-1)^{\prime}\frac{\sqrt{K_{i}K_{-i}}}{K_{i} + K_{-i}} \sin(\Delta m_{B}\Delta t)(S_{i}\cos 2\phi_{1} + C_{i}\sin 2\phi_{1}) \right]$$

Integrated |amplitude|² $K_i = \int |\mathcal{A}_D(m_-^2, m_+^2)|^2 d\mathcal{D}$ from $B^-
ightarrow D^0 \pi^-$ (flavor specific) Integrated strong phase $S_{i} = \frac{\int |\mathcal{A}_{D}| |\overline{\mathcal{A}}_{D}| \sin \Delta \delta_{D} d\mathcal{D}}{\sqrt{K_{i} K_{-i}}},$ $C_{i} = \frac{\int |\mathcal{A}_{D}| |\overline{\mathcal{A}}_{D}| \cos \Delta \delta_{D} d\mathcal{D}}{\sqrt{K_{i} K_{-i}}}$ from coherent $D^0 \overline{D}^0$ by CLEO **Measured in 8×2 bins**

Signal

- Standard $M_{\rm bc}$ - ΔE fit
- Total: 962 \pm 41 signal events
- Signal fraction used in the Δt Dalitz fit

mode	$N_{\sf sig}$	$f_{sig}(\%)$
$D^0\pi^0$	464 ± 26	72 ± 4
$D^0\eta_{\gamma\gamma}$	99 ± 14	51 ± 7
$D^0\eta_{\pi^+\pi^-\pi^0}$	51 ± 9	66 ± 11
$D^0\omega$	182 ± 18	58 ± 6
$D^0\eta^\prime$	28 ± 6	70 ± 16
$D^{*0}\pi^0$	103 ± 17	44 ± 7
$D^{*0}\eta$	36 ± 8	64 ± 13

Flavor-tagged Dalitz plot

 Clear pattern visible for B⁰ tagged and B⁰ tagged Dalitz plots (selected events with good tag probability)

Results

mode	$\sin 2\phi_1$	$\cos 2\phi_1$	
$B^0 o D \pi^0$	0.61 ± 0.37	$0.88^{+0.46}_{-0.52}$	ison
$B^0 ightarrow D \omega$	-0.12 ± 0.58	$1.28^{+0.62}_{-0.69}$	preliminary
others	0.44 ± 0.51	$0.89^{+0.49}_{-0.55}$	
combined	$0.43 \pm 0.27 \pm 0.08$	$1.06 \pm 0.33^{+0.21}_{-0.15}$	

$\phi_{1} = 11.7^{\circ} \pm 7.8^{\circ} \pm 2.1^{\circ}$ (this analysis) $\Leftrightarrow \text{ two solutions} \qquad 20$ from golden mode $\phi_{1} = 21.9^{\circ} (1.3\sigma \text{ away})$ $\phi_{1} = 68.1^{\circ} (5.1\sigma \text{ away}) \qquad 10$

Definitely disfavors the second ϕ_1 **solution**

$B^0 \rightarrow \psi(2S)\pi^0$ — for future ϕ_1

Belle Collaboration, Phys. Rev. D93, 031101(R) (2016) (see also talk by Vipin Gaur at Moriond QCD 2016 conference)

$m{B} ightarrow m{\psi}(2m{S}) m{\pi}^0$ motivation and analysis

• To quantify the penguin pollution to ϕ_1 in $b \to c\overline{c}s$, let's look at a different diagram: $b \to c\overline{c}d$

 $b \rightarrow c \overline{c} d$ tree transition (dominant contribution)

 $b \rightarrow dc\overline{c}$ loop process (strongly suppressed)

• $B \rightarrow J/\psi \pi^0$ has been measured: [PRD77,071101R(2008), Belle 535M $B\overline{B}$] $S_{J/\psi\pi^0} = -0.65 \pm 0.21 \pm 0.05$ (consistent with sin $2\phi_1$ from $b \rightarrow c\overline{c}s$) but $B \rightarrow \psi(2S)\pi^0$ has not been previously observed

Analysis technique:

- Decay chain: $\psi(2S) o \ell^+ \ell^-$ or $J/\psi(o \ell^+ \ell^-) \pi^+ \pi^-$ ($\ell=e$, μ), $\pi^0 o \gamma\gamma$
- Background: $b \rightarrow (c\overline{c})q$ feed-across, $R_2 < 0.5$ for continuum

• Signal:
$$M_{\rm bc} = \sqrt{(E^*_{\rm beam})^2 - (p^*_B)^2} \Rightarrow m_B, \ \Delta E = E_B - E^*_{\rm beam} \Rightarrow 0$$

$\boldsymbol{B} ightarrow \boldsymbol{\psi}(2\boldsymbol{S}) \boldsymbol{\pi}^0$ results

$$\mathcal{B}(\boldsymbol{B} \to \boldsymbol{\psi}(2\boldsymbol{S})\boldsymbol{\pi}^0) = (1.17 \pm 0.17 \pm 0.08) \times 10^{-5} (7.2\sigma)$$

 $\Leftrightarrow \mathcal{B}(B
ightarrow J/\psi \pi^0) = (1.76 \pm 0.16) imes 10^{-5}$ (PDG)

85 ± 12 events first observation, time dependent CP fit with future Belle II data

Summary

U First observation of CPV in $B \rightarrow D_{cp}^{(*)}h^0$ from Belle + BaBar, not possible without combining, promising for Belle II NP search

- UNew results on $\cos 2\phi_1$ from model-independent and timedependent Dalitz analysis of $B \to D^{(*)}h^0$, $D \to K_S \pi \pi$ second ϕ_1 solution is excluded by 5σ
- U Observation of $B \to \psi(2S)\pi^0$ a new $b \to c\overline{c}d$ mode
- Modes with h⁰ will be more interesting with Belle II statistics, and may not be so easy by LHCb
 - But that's not all Belle still has number of analyses in preparation for ϕ_1 , ϕ_2 and other hadronic *B* decays

Stay tuned (even before Belle II turns on)

$\phi_2 - B^0 \rightarrow \rho^+ \rho^-$

Belle Collaboration, Phys. Rev. D93, 032010 (2016) (see also talk by Pit Vanhoefer at EPS-HEP 2015 conference)

ϕ_2 and isospin analysis

- sin $2\phi_2$ can e extracted from $B \to \pi^+\pi^-$ and $B \to \rho^+\rho^-$, $S = \sin 2\phi_2$, if there is no "penguin pollution"
- Unfortunately this is not the case, $S = \sqrt{1 A^2} \sin 2(\phi_2 + \Delta \phi_2)$, but fortunately size of penguin contribution can be resolved
- Solution using isospin relations:
 3 branching fractions and 2 direct CPV are needed

Gronau, London PRL65, 3381 (1990)

$B^0 ightarrow ho^+ ho^-$ analysis

- Polarization has to be resolved as vector-vector final state is mixture of CP-even and CP-odd
- Predicted to be almost fully longitudinally polarized, and hence almost CP-even
- Decomposed by helicity angle
- $\rho^+ \rightarrow \pi^+ \pi^0$ to be separated from other $\pi^+ \pi^0$ contributions
- Standard time-dependent fit
- 9-parameter ML fit

 $\Delta E, M_{\rm bc}, \mathcal{F}, m_{+0}, m_{-0}, \\ \cos \theta_{H}^{+}, \cos \theta_{H}^{-}, \Delta t, q$

Fit results

[Belle preliminary]

 $\mathcal{B}(B^0 o
ho^+
ho^-) = (28.3 \pm 1.5 \pm 1.4) imes 10^{-6}$ $f_L = 0.988 \pm 0.012 \pm 0.023$ $\mathcal{S} = -0.13 \pm 0.15 \pm 0.05, \, \mathcal{A} = 0.00 \pm 0.10 \pm 0.06$

Better precision than previous world average

ϕ_2 extraction

reduced to 2-fold

From longitudinally polarized (LP) $B \rightarrow \rho \rho$ Belle data only:

 $\phi_2 = (93.7 \pm 10.6)^{\circ} \Leftrightarrow WA$, all modes: $\phi_2 = (87.6 + 3.5)^{\circ}$ Additional **U** 0.9 input: $\rho^0 \rho^0$ (2014) ' 0.8⊧ 0.7 $\rho \rho_{LP}$ PRD89, 072009 0.6 $\rho^+ \rho^0$ (2003!) 0.5 **0.4**⊧ PRL91.221801 (only 10% data!) 0.3 **0.2** Thanks to small **0.1**⊨ $B \rightarrow (\rho^0 \rho^0)_{LP}$, 4-fold ambiguity 30 60 90 150 120 0 180

68%

Belle's final ϕ_2 is yet to come, by updating $\rho^+\rho^0$ and $\rho\pi$ analyses

ϕ_2 related — $B^0 \rightarrow \eta \pi^0$ Belle Collaboration, Phys. Rev. D92, 011101(R) (2015)

(see also talk by Bilas Pal at CIPANP 2015 conference)

$B^0 ightarrow \eta \pi^0$ motivations

• Color suppressed $b \rightarrow u$ and highly suppressed $b \rightarrow d$

- Useful to constrain isospin breaking in ϕ_2 from $B \rightarrow \pi \pi$ [Gronau et al, PRD71, 074017 (2005); Gardner, PRD72 034015 (2005)]
- Also useful to constrain $\Delta \phi_1 = \phi_1^{\text{eff}} \phi_1$ from $B \rightarrow \eta' K^0$ [Gronau et al, PLB596, 107 (2004); Gronau et al, PRD74, 093003 (2006)]
- Previous upper limits: $\mathcal{B} < 2.5 \times 10^{-6} \text{ (Belle, 152M } B\overline{B}, \text{ PRD71, 091106R (2005))}$ $\mathcal{B} < 1.5 \times 10^{-6} \text{ (BaBar, 459M } B\overline{B}, \text{ PRD78, 011107R (2008))}$
 - Update with Belle full dataset (753M $B\overline{B}$)

$B^0 ightarrow \eta \pi^0$ results

$$ullet$$
 $\eta
ightarrow \gamma \gamma$ and $\eta
ightarrow \pi^+\pi^-\pi^0$

• Fit to M_{bc} , ΔE and continuum suppression variable C'_{NB}

- $\mathcal{B}(B \to \eta \pi^0) = (4.1^{+1.7}_{-1.5}) \times 10^{-7}$ (3.0 σ), first evidence
- Limit on isospin breaking effect: $|(\Delta lpha - \Delta lpha_0)_{\pi^0 - \eta - eta'}| < 0.97^\circ$ (90% CL) (previously < 1.6°)

(plots for $\eta ightarrow \gamma\gamma$ mode)

(similar plots for $\eta \to \pi^+\pi^-\pi^0$ mode)