Recent results on CPV and hadronic decays of B mesons at Belle

Mikihiko Nakao (KEK)
mikihiko.nakao@kek.jp

2016.05.26
XIIIth International Conference on Heavy Quarks and Leptons
Blacksburg, Virginia
B-factory concept

asymmetric energy

\(e^- \) (8 GeV) \(e^+ \) (3.5 GeV)

Time-dependent CPV of Golden mode:

✓ \(B^0 \rightarrow J/\psi K_S \)

✓ flavor tag

\(\epsilon_{\text{effective}} \sim 30\% \)

✓ \(\sigma(\Delta z) \sim 100 \mu m \)

\(\Leftrightarrow \langle \Delta z \rangle \sim 200 \mu m \)

\(S_{c\bar{c}s} = \sin 2\phi_1 = +0.667 \pm 0.023 \pm 0.013 \) PRL 108, 171802 (2012)

\(S_{c\bar{c}s} = \sin 2\beta = +0.687 \pm 0.028 \pm 0.012 \) PRD 79, 072009 (2009)

(\(C_{c\bar{c}s} \sim 0 \), consistent with SM)
\[2\phi_1 = \phi \left(\begin{array}{c} V_{td} \\ V_{td} \end{array} \right) \]

\[2\phi_2 = \phi \left(\begin{array}{c} V_{td} \\ V_{td} \end{array} \right) + \phi \left(\begin{array}{c} V_{ub} \\ V_{ub}^* \end{array} \right) \]

\[\phi_3 = \phi \left(\begin{array}{c} V_{ub} \\ V_{ub}^* \end{array} \right) \]

Golden Mode \((B \to J/\psi K_S)\): phase in \(B^0 - \overline{B^0}\) mixing

- Very clean, only tiny SM penguin pollution so far neglected
- NP phase in mixing if any cannot be distinguished
- Small SM pollution should eventually be problem \((O(1\text{--}2\%))\)

Overconstraint of UT triangle

- All angles and sides can be measured
- CPV parameters from other means: \(V_{ub}, \phi_3\) (tree, SM)
Success of SM:

- overconstrained unitarity triangle

However...

- Still problem in V_{ub}
- It's only ϕ_1 and $\Delta m_d/\Delta m_s$ giving high precision
- Second ϕ_1 solution is not yet excluded with high CL
- Nothing precludes O(10%) beyond the SM physics(!)
Outline

- **3 topics today**
 - \(\sin 2\phi_1 \) in \(B^0 \rightarrow D^{(*)}_CP h^0 \) with Belle+BaBar data

 ![Belle][Belle] ![BaBar][BaBar] [PRL 115, 121604 (2015)]

 - \(\sin 2\phi_1 \) & \(\cos 2\phi_1 \) in \(B^0 \rightarrow D^{(*)} h^0, D \rightarrow K_S \pi \pi \)

 ![Belle][Belle] [preliminary, NEW!]

 - First observation of \(B^0 \rightarrow \psi(2S) \pi^0 \)

 ![Belle][Belle] [PRD 93, 031101(R) (2016)]

- **Overflow** (in backup slides)
 - \(\phi_2 \) from \(B^0 \rightarrow \rho^+ \rho^- \)

 ![Belle][Belle] [PRD 93, 032010 (2016)]
 - Evidence for \(B^0 \rightarrow \eta \pi^0 \)

 ![Belle][Belle] [PRD 92, 011101(R) (2015)]

All results based on full dataset of 772M \(B \bar{B} \) (+471M from BaBar)
\[(b \rightarrow c \text{ tree}) \Rightarrow b \rightarrow c\bar{c}s \quad B \rightarrow J/\psi K_S \quad (\phi_1 \text{ golden mode})\]

\[\Rightarrow b \rightarrow c\bar{c}d \quad B \rightarrow J/\psi \pi^0, \psi(2S)\pi^0 \quad (\phi_1)\]

\[b \rightarrow c\bar{u}s \quad B \rightarrow D\bar{K} \quad (\phi_3, \text{ tree only})\]

\[\Rightarrow b \rightarrow c\bar{u}d \quad B \rightarrow D\pi \quad (\phi_1, \phi_3)\]

\[(b \rightarrow u \text{ tree, suppressed}) \\quad b \rightarrow u\bar{c}s \quad B \rightarrow D\bar{K} \quad (\phi_3)\]

\[b \rightarrow u\bar{c}d \quad B \rightarrow D\pi \quad (\phi_1, \phi_3, \text{ suppressed})\]

\[b \rightarrow u\bar{u}s \quad B \rightarrow K\pi \text{ tree} \]

\[\Rightarrow b \rightarrow u\bar{u}d \quad B \rightarrow \pi\pi \quad (\phi_2)\]

\[(b \rightarrow s \text{ penguin}) \Rightarrow b \rightarrow s\bar{c}c \quad B \rightarrow J/\psi K_S \quad (\phi_1 \text{ pollution})\]

\[b \rightarrow s\bar{s}s \quad B \rightarrow \phi K \]

\[b \rightarrow s\bar{u}u \quad B \rightarrow K\pi \text{ penguin} \]

\[b \rightarrow s\bar{d}d \quad B \rightarrow K\pi \text{ penguin} \]

\[(b \rightarrow d \text{ penguin, suppressed}) \Rightarrow b \rightarrow d\bar{c}c \quad B \rightarrow J/\psi \pi^0, \psi(2S)\pi^0 \quad (\phi_1 \text{ pollution})\]

\[b \rightarrow d\bar{s}s \quad B \rightarrow KK \text{ penguin} \]

\[\Rightarrow b \rightarrow d\bar{u}u \quad B \rightarrow \pi\pi \text{ penguin} \quad (\phi_2 \text{ isospin analysis})\]

\[b \rightarrow d\bar{d}d \quad B \rightarrow \pi\pi \text{ penguin} \quad (\phi_2 \text{ isospin analysis})\]
$\phi_1 \rightarrow B^0 \rightarrow D^{(*)}_{cp} h^0$

(see also talk by Markus Röhrken at EPS-HEP 2015 conference)
$B \rightarrow D^{(*)}_{cp} h^0$

- **Decay modes**
 - $D_{cp} = D^0 / \bar{D}^0$ decaying into $K^+ K^-$ (CP$^+$); $K_S \pi^0$, $K_S \omega$ (CP$^-$)
 - $D^{*}_{cp} \rightarrow D_{cp} \pi^0$ (still CP eigenstate)
 - h^0 — neutral meson: π^0, η, ω (CP$^-$)
 - $D^{(*)}_{cp} h^0$ final states are also CP eigenstates (CP$^+$ or $^-$)

- **Time-dependent CPV analysis gives** $S = -(-1)^{CP} \sin 2\phi_1$
 - But not only “yet-another” CPV measurement for ϕ_1
 - tree diagram only and hence **penguin pollution free**

(CPV in D decay is much smaller and neglected)
Time-dependent Analysis for $B \rightarrow D^{(*)} h^0$

- **Average** $\Delta z \sim 200\mu m$ for Belle, $\sim 250\mu m$ for BaBar
- **Standard time-dependent CPV measurement**, but
 - Vertex extrapolated from $K_S \rightarrow \pi^+\pi^-$ for $h^0 \rightarrow \gamma\gamma$
 - Trajectory from **displaced** D^0 vertex with IP constraint
 - Resolution $\sim 100\mu m$, depending on final state
- **Standard flavor tagging algorithm**
First Belle-BaBar Joint Analysis

- **Motivation** — small branching fraction \(O(10^{-6})\)
- **Difficulty** — event vertex resolution and tagging efficiency
- **Analysis** — who joined BaBar from Belle and working on both
 - Continuum background — event shape variables (NN)
 - Beam-energy constrained mass — \(M_{bc} = \sqrt{(E_{beam}^*)^2 - (p_B^*)^2}\)

![Graphs showing signal and background events](image)

- **Signal:** 508 ± 31 events
- **Signal:** 757 ± 44 events
Principle of the Combined Analysis

- Combined by maximizing the **joint log-likelihood function**

\[
\ln \mathcal{L} = \sum_i \ln \mathcal{P}_i^{\text{BaBar}} + \sum_j \ln \mathcal{P}_j^{\text{Belle}}
\]

- PDFs with **experiment specific resolution functions**

\[
\mathcal{P}^{\text{exp}} = \sum_k f_k \int [P_k(\Delta t') R_k(\Delta t - \Delta t')] d\Delta t'
\]

[k: signal or background index, \(P_k\): signal or background model, \(R_k\): resolution function]

- Event/experiment dependent flavor tagging quality — \(q\)

- **Common signal model**

\[
P_{\text{sig}}(\Delta t, q) = \frac{1}{4\tau_{B^0}} e^{-|\Delta t|/\tau_{B^0}} [1 + q(S \sin(\Delta m \Delta t) - C \cos(\Delta m \Delta t))]\]

\[-(-1)^{CP} S = \sin 2\phi_1 \text{ and } C = 0 \text{ in the SM}\]

- Background determined from \(M_{bc}\) sidebands
$B \rightarrow D_{cp}^{(*)} h^0$ Results

$\left(-1\right)^{CP} S = +0.66 \pm 0.10 \pm 0.06$
$C = -0.02 \pm 0.07 \pm 0.03$

(5.4\sigma$ non-zero CPV)

First observation in agreement with CPV parameters from $b \rightarrow c\bar{c}s$

Full Belle II data will allow to address O(10%) NP effect
$B^0 \to D(^*)^0 h^0$, $D \to K_S \pi^+ \pi^-$

Belle Collaborations, preliminary (first shown today)
$B^0 \rightarrow D^{(*)0} h^0$, $D \rightarrow K_S \pi^+ \pi^-$

- Similar to $B \rightarrow D^{(*)0}_{cp} h^0$, but $D \rightarrow K_S \pi^+ \pi^-$ is not a CP eigenstate
- Mix of e.g. $K^{*-} \pi^+$ (favored), $K_S \rho^0$ (CP), $K^{*+} \pi^-$ (DCS)
- Many K resonances: $K^*(892)$, $K^*_0(1430)$, $K_1(1270)$, $K^*_2(1430)$, ...
- Dalitz plot provides rich and **measureable** strong phase structure

Dalitz model

- Sum of known resonances, relative amplitude and phase from a fit to $D^{*-} \rightarrow D^0 \pi^+$
 (unbinned, model-dependent)
- $|\text{amplitude}|^2$ from $B^- \rightarrow D^0 \pi^-$, phase from coherent $\psi(3770) \rightarrow D^0 \bar{D}^0$ into $(D \rightarrow K_S \pi^+ \pi^-)^2$ and CP-tagged modes by CLEO
 (binned, model-independent)
Time-dependent Dalitz analysis

\[P_{\text{sig}}(m_+^2, m_-^2, \Delta t) \propto e^{-|\Delta t|/\tau_B} \left[1 + q_B(A(m_+^2, m_-^2) \cos(\Delta m_B \Delta t) + S(m_+^2, m_-^2) \sin(\Delta m_B \Delta t)) \right] \]

\[S(m_+^2, m_-^2) \propto \text{Im}[f(m_-^2, m_+^2)f^*(m_+^2, m_-^2)e^{2\phi_1}] \]

- **Sensitive directly to** \(\phi_1 \), **or both** \(\sin 2\phi_1 \) **and** \(\cos 2\phi_1 \)
 [Bondar, Gershon, Krokovny: PLB 624, 1(2005)]

- **Combination of widely used techniques**
 - \(D \) Dalitz plot analysis developed for \(\phi_3 \)
 - Time-dependent Dalitz to measure \(\phi_1^{\text{eff}} \) in \(b \to s \) penguin (\(B \to K_S \pi \pi \))

- **Previous model-dependent analysis**
 - Belle (386M \(B\bar{B} \)) [PRL 97, 081801 (2006)]
 - BaBar (383M \(B\bar{B} \)) [PRL 99, 231802 (2007)]
 - Exclusion of second \(\phi_1 \) solution only by 98% and 86% CL

- **New analysis with full Belle data** (772M \(B\bar{B} \))
Model-independent binned analysis

\[N_i(\Delta t, \phi_1) = h_2 e^{-\frac{|\Delta t|}{\tau_B}} \left[1 + Q_B \frac{K_i - K_{-i}}{K_i + K_{-i}} \cos(\Delta m_B \Delta t) \right. \\
\left. + 2Q_B \xi_{h^0} (-1)^l \frac{\sqrt{K_i K_{-i}}}{K_i + K_{-i}} \sin(\Delta m_B \Delta t) (S_i \cos 2\phi_1 + C_i \sin 2\phi_1) \right] \]

Integrated |amplitude|^2

\[K_i = \int |A_D| (m_2^-, m_2^+) |^2 dD \]

from \(B^- \rightarrow D^0 \pi^- \) (flavor specific)

Integrated strong phase

\[S_i = \frac{\int |A_D| \overline{|A_D|} \sin \Delta \delta_D dD}{\sqrt{K_i K_{-i}}} \]

\[C_i = \frac{\int |A_D| \overline{|A_D|} \cos \Delta \delta_D dD}{\sqrt{K_i K_{-i}}} \]

from coherent \(D^0 \overline{D^0} \) by CLEO

Measured in 8 \times 2 bins

(binning based on a realisting resonant model)
Signal

- Standard M_{bc}-ΔE fit
- Total: 962 ± 41 signal events
- Signal fraction used in the Δt Dalitz fit

preliminary

<table>
<thead>
<tr>
<th>mode</th>
<th>N_{sig}</th>
<th>f_{sig}(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \pi^0$</td>
<td>464 ± 26</td>
<td>72 ± 4</td>
</tr>
<tr>
<td>$D^0 \eta \gamma \gamma$</td>
<td>99 ± 14</td>
<td>51 ± 7</td>
</tr>
<tr>
<td>$D^0 \eta_{\pi^+ \pi^- \pi^0}$</td>
<td>51 ± 9</td>
<td>66 ± 11</td>
</tr>
<tr>
<td>$D^0 \omega$</td>
<td>182 ± 18</td>
<td>58 ± 6</td>
</tr>
<tr>
<td>$D^0 \eta'$</td>
<td>28 ± 6</td>
<td>70 ± 16</td>
</tr>
<tr>
<td>$D^{*0} \pi^0$</td>
<td>103 ± 17</td>
<td>44 ± 7</td>
</tr>
<tr>
<td>$D^{*0} \eta$</td>
<td>36 ± 8</td>
<td>64 ± 13</td>
</tr>
</tbody>
</table>

$B^0 \rightarrow D \pi^0$

$B^0 \rightarrow D \pi^0$

M_{bc} (GeV/c2)

ΔE (GeV)
Flavor-tagged Dalitz plot

- Clear pattern visible for B^0 tagged and \overline{B}^0 tagged Dalitz plots (selected events with good tag probability)
Results

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\sin 2\phi_1$</th>
<th>$\cos 2\phi_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow D\pi^0$</td>
<td>0.61 ± 0.37</td>
<td>$0.88^{+0.46}_{-0.52}$</td>
</tr>
<tr>
<td>$B^0 \rightarrow D\omega$</td>
<td>-0.12 ± 0.58</td>
<td>$1.28^{+0.62}_{-0.69}$</td>
</tr>
<tr>
<td>Others</td>
<td>0.44 ± 0.51</td>
<td>$0.89^{+0.49}_{-0.55}$</td>
</tr>
<tr>
<td>Combined</td>
<td>$0.43 \pm 0.27 \pm 0.08$</td>
<td>$1.06 \pm 0.33^{+0.21}_{-0.15}$</td>
</tr>
</tbody>
</table>

\[
\phi_1 = 11.7^\circ \pm 7.8^\circ \pm 2.1^\circ
\]

(this analysis)

⇔ two solutions
from golden mode
\[
\phi_1 = 21.9^\circ \ (1.3\sigma \text{ away}) \\
\phi_1 = 68.1^\circ \ (5.1\sigma \text{ away})
\]

Definitely disfavors the second ϕ_1 solution
$B^0 \rightarrow \psi(2S)\pi^0$ — for future ϕ_1

(see also talk by Vipin Gaur at Moriond QCD 2016 conference)
To quantify the penguin pollution to ϕ_1 in $b \rightarrow c\bar{c}s$, let's look at a different diagram: $b \rightarrow c\bar{c}d$

$B \rightarrow \psi(2S)\pi^0$ has been measured: [PRD77,071101R(2008), Belle 535M $B\bar{B}$]

$S_{\psi\pi^0} = -0.65 \pm 0.21 \pm 0.05$ (consistent with $\sin 2\phi_1$ from $b \rightarrow c\bar{c}s$)

but $B \rightarrow \psi(2S)\pi^0$ has not been previously observed

Analysis technique:
- Decay chain: $\psi(2S) \rightarrow \ell^+\ell^-$ or $J/\psi \rightarrow \ell^+\ell^-\pi^+\pi^- \ (\ell = e, \mu)$, $\pi^0 \rightarrow \gamma\gamma$
- Background: $b \rightarrow (c\bar{c})q$ feed-across, $R_2 < 0.5$ for continuum
- Signal: $M_{bc} = \sqrt{(E_{\text{beam}}^*)^2 - (p_B^*)^2} \Rightarrow m_B$, $\Delta E = E_B - E_{\text{beam}}^* \Rightarrow 0$
$B \rightarrow \psi(2S)\pi^0$ results

$\mathcal{B}(B \rightarrow \psi(2S)\pi^0) = (1.17 \pm 0.17 \pm 0.08) \times 10^{-5}$ (7.2σ)

$\Leftrightarrow \mathcal{B}(B \rightarrow J/\psi\pi^0) = (1.76 \pm 0.16) \times 10^{-5}$ (PDG)

85 ± 12 events

first observation, time dependent CP fit with future Belle II data
Summary
First observation of CPV in $B \rightarrow D_{cp}^{(*)} h^0$ from Belle + BaBar, not possible without combining, promising for Belle II NP search

New results on $\cos 2\phi_1$ from model-independent and time-dependent Dalitz analysis of $B \rightarrow D^{(*)} h^0, D \rightarrow K_S \pi \pi$

second ϕ_1 solution is excluded by 5σ

Observation of $B \rightarrow \psi(2S)\pi^0$ — a new $b \rightarrow c\bar{c}d$ mode

Modes with h^0 will be more interesting with Belle II statistics, and may not be so easy by LHCb

But that’s not all — Belle still has number of analyses in preparation for ϕ_1, ϕ_2 and other hadronic B decays

Stay tuned (even before Belle II turns on)!
Overflow
$\phi_2 \rightarrow B^0 \rightarrow \rho^+ \rho^-$

(see also talk by Pit Vanhoefer at EPS-HEP 2015 conference)
\(\phi_2 \) and isospin analysis

- \(\sin 2\phi_2 \) can be extracted from \(B \to \pi^+\pi^- \) and \(B \to \rho^+\rho^- \), \(S = \sin 2\phi_2 \), if there is no "penguin pollution"

- Unfortunately this is not the case, \(S = \sqrt{1-A^2} \sin 2(\phi_2 + \Delta\phi_2) \), but fortunately size of penguin contribution can be resolved

- **Solution using isospin relations:**
 3 branching fractions and 2 direct CPV are needed

\[
\begin{align*}
A_{++}: B^0 &\to h^+ h^- \\
A_{--+}: B^0 &\to h^+ h^- \\
A_{00}: B^0 &\to h^0 h^0 \\
\bar{A}_{00}: \bar{B}^0 &\to h^0 h^0 \\
A_{+0}: B^+ &\to h^+ h^0 \\
(h = \pi, \; \rho)
\end{align*}
\]

Gronau, London PRL65, 3381 (1990)
$B^0 \rightarrow \rho^+ \rho^-$ analysis

- Polarization has to be resolved as vector-vector final state is mixture of CP-even and CP-odd
- Predicted to be almost fully longitudinally polarized, and hence almost CP-even
- Decomposed by helicity angle
- $\rho^+ \rightarrow \pi^+ \pi^0$ to be separated from other $\pi^+ \pi^0$ contributions
- Standard time-dependent fit
- 9-parameter ML fit

$\Delta E, M_{bc}, F, m_{+0}, m_{-0}, \cos \theta^+_H, \cos \theta^-_H, \Delta t, q$
Fit results

Belle preliminary

\[
\mathcal{B}(B^0 \rightarrow \rho^+ \rho^-) = (28.3 \pm 1.5 \pm 1.4) \times 10^{-6}
\]

\[
f_L = 0.988 \pm 0.012 \pm 0.023
\]

\[
S = -0.13 \pm 0.15 \pm 0.05, \quad A = 0.00 \pm 0.10 \pm 0.06
\]

Better precision than previous world average
\(\phi_2 \) extraction

From longitudinally polarized (LP) \(B \to \rho \rho \) Belle data only:

\[
\phi_2 = (93.7 \pm 10.6)^\circ \quad \Leftrightarrow \quad \text{WA, all modes: } \phi_2 = (87.6^{+3.5}_{-3.3})^\circ
\]

Additional input:

- \(\rho^0 \rho^0 \) (2014), PRD89, 072009
- \(\rho^+ \rho^0 \) (2003!), PRL91,221801 (only 10% data!)

Thanks to small \(B \to (\rho^0 \rho^0)^{LP} \), 4-fold ambiguity reduced to 2-fold

Belle’s final \(\phi_2 \) is yet to come, by updating \(\rho^+ \rho^0 \) and \(\rho \pi \) analyses
ϕ_2 related — $B^0 \rightarrow \eta\pi^0$

(see also talk by Bilas Pal at CIPANP 2015 conference)
$B^0 \rightarrow \eta \pi^0$ motivations

- Color suppressed $b \rightarrow u$ and highly suppressed $b \rightarrow d$

- Useful to constrain isospin breaking in ϕ_2 from $B \rightarrow \pi \pi$
 [Gronau et al, PRD71, 074017 (2005); Gardner, PRD72 034015 (2005)]

- Also useful to constrain $\Delta \phi_1 = \phi_{1}^{\text{eff}} - \phi_1$ from $B \rightarrow \eta' K^0$
 [Gronau et al, PLB596, 107 (2004); Gronau et al, PRD74, 093003 (2006)]

- Previous upper limits:
 $\mathcal{B} < 2.5 \times 10^{-6}$ (Belle, 152M $B \overline{B}$, PRD71, 091106R (2005))
 $\mathcal{B} < 1.5 \times 10^{-6}$ (BaBar, 459M $B \overline{B}$, PRD78, 011107R (2008))

- Update with Belle full dataset (753M $B \overline{B}$)
$B^0 \rightarrow \eta \pi^0$ results

- $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$
- Fit to M_{bc}, ΔE and continuum suppression variable C'_{NB}
- $\mathcal{B}(B \rightarrow \eta \pi^0) = (4.1^{+1.7}_{-1.5} \pm 0.7) \times 10^{-7}$ (3.0σ), first evidence
- Limit on isospin breaking effect: $|(\Delta \alpha - \Delta \alpha_0)_{\pi^0-\eta-\text{eta}'}| < 0.97^\circ$ (90% CL) (previously $< 1.6^\circ$)

plots for $\eta \rightarrow \gamma \gamma$ mode

(similar plots for $\eta \rightarrow \pi^+ \pi^- \pi^0$ mode)