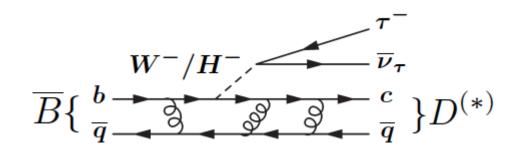


Lepton Universality


• In the Standard Model, the couplings of the gauge bosons to leptons are independent of the lepton flavour

- Charged Lepton Universality implies that the branching fractions of e, μ and τ differ only by phase space and helicity-suppressed contributions
- The Lepton Flavour Universality (LFU) is enforced in the SM by costruction
 - Any violation of lepton universality would be a clear sign of physics beyond the SM.
- Over the years, LFU violation has been searched in several system
 - Z \rightarrow ll, W \rightarrow lv, J/ ψ \rightarrow ll, ψ (2S) \rightarrow ll, Υ \rightarrow ll, τ \rightarrow lv, K \rightarrow (π)lv
 - These measurements provide very strong limit in the non-universality in the SM EW sector
 - More significant tests involve the 1° and 2° quarks and leptons families

Lepton Universality

- Hints of LFU violation in $B^+ \rightarrow K^+l^+l^-$ (l=e, μ) (PRL 113(2014) 151601)
 - New measurements necessary in semileptonic decays
- A large class of SM extensions contain new interactions that involve third generation of quarks and leptons
 - Higgs-like charged scalar: H[±], new vectors coupled to SM Higgs doublet, leptoquarks, 2 Higgs doublets model (2HDM type II or III)...
- A quantity sensitive to contribution beyond the SM is the branching fraction of $\overline{B}{}^o\!\to D^*\,\tau^\!-\!\overline{v}$

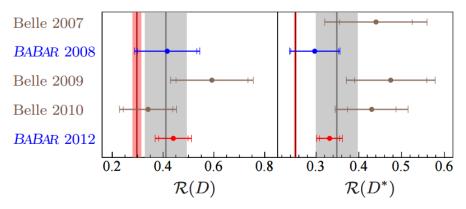
B

• BR(B⁰ \rightarrow D^{*} τ v) = (1. 84 ± 0.22) % \rightarrow no rare decay

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[\left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} |H_{0t}|^2 \right]$$

- $H_{00,++,-}$: elicity amplitudes common to e,μ,τ
- H_{0t}: relevant only for tauonic decays.
- The ratio R(D*) is defined:

$$R(D^*) = \frac{B(\overline{B}^0 \to D^{*+} \tau^- \overline{v}_{\tau})}{B(\overline{B}^0 \to D^{*+} \mu^- \overline{v}_{\mu})}$$


- \bullet It is theoretically clean due to cancellation of $|V_{cb}|$ and form factors uncertainties
 - $R(D^*) = 0.252 \pm 0.003$ (PRD 85094025 (2012))
- It is experimentally clean with muonic tau decays

$$B(\tau^- \to \mu^- \nu_\mu \nu_\tau) = (17.41 \pm 0.04)\%$$

- Several uncertainties cancel in ratio:
 - D* recostruction, Particles identification and tracking efficiencies

 $R(D^*)$

- $R(D^*)$: 2.7 σ from SM prediction
- Combination of $R(D^*)$ and R(D): 3.4 σ from SM prediction
- New result from Belle (see Christoph SCHWANDA's talk)

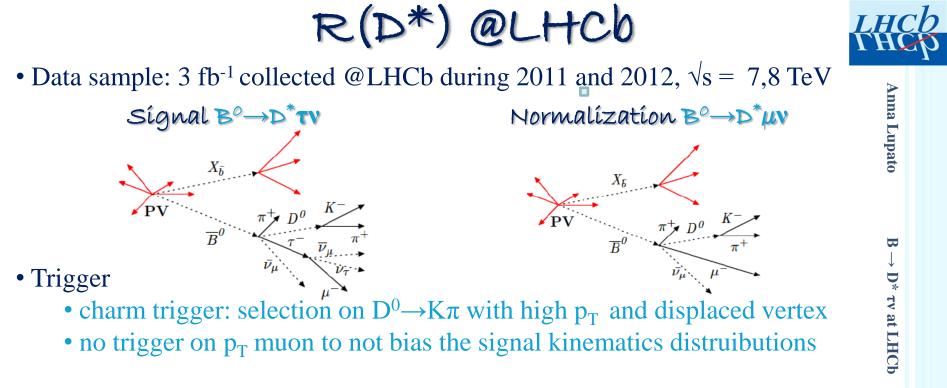
• B factory measurements are based on recostructing missing mass using opposite side recostruction

• Not possible to LHCb:


• Unconstrained kinematics due to unkown parton-parton collision energy and neutrinos in the final state

R(D*)@LHCb: experimental challenge

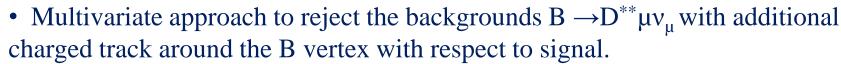
- Additional tracks: underlying event, MPI and Jets
- Large background: partially reconstructed B decays
- Unconstrained kinematics due to unknown parton-parton collision energy and neutrino in the final state
 - B⁰ direction well determined by unit vector from PV to B vertex decay
 - Assuming that the velocity of visibile part of semileptonic decay along the beam axis is equal to the b hadron velocity \rightarrow


$$(p_B)_z = \frac{m_B}{m_{D^*\mu}} (p_{D^*\mu})_z$$
$$|p_B| = \frac{m_B}{m_{D^*\mu}} (p_{D^*\mu})_z \sqrt{1 + \tan^2 \alpha}$$

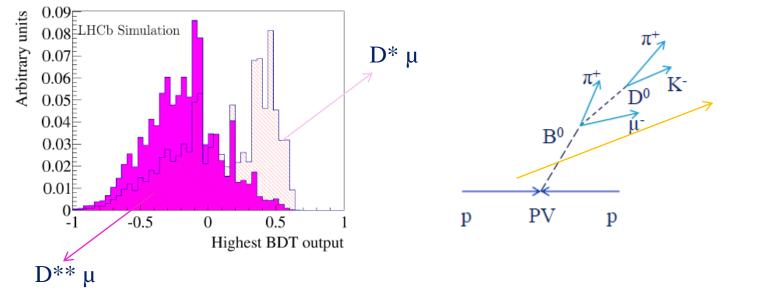
• 18% resolution on p_B

(PRL115,111803(2015))

6


•
$$\epsilon_{\tau} / \epsilon_{\mu} = (77.6 \pm 1.4) \%$$

• signal losses due to lower p_T and worst vertex in tau decay


Distinguish between signal and normalization channel
Identical particles in the final states for signal and normalization channel

- •Large background: $B \rightarrow D^{**} \mu \nu_{\mu}$ and $B \rightarrow D^{*} \mu \nu_{\mu}$
- Most dangerous backgrounds:
 - B $\rightarrow D^{**}\mu\nu_{\mu}$, B $\rightarrow D^{*}n\pi\mu\nu_{\mu}$, B $\rightarrow D^{*}H_{c}$ X (any possible $H_{c}\rightarrow Y\mu\nu_{\mu}$)

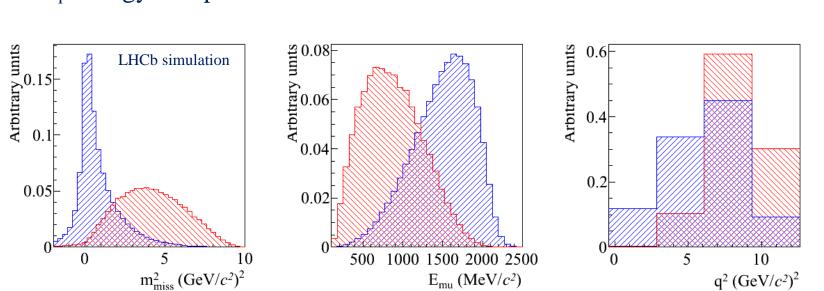
• Data sample enriched in $B \rightarrow D^* \mu \nu_{\mu}$ and $B \rightarrow D^* \tau \nu_{\tau}$

• Alternative requirement allow to select three data control samples used in the backgrounds analysis:

- B $\rightarrow D^* \mu X \pi$
- $B \rightarrow D^* \mu X \pi \pi$
- B $\rightarrow D^* \mu X \mathbf{K}$

Anna Lupato

B


 \rightarrow D* τv at LHCb

 $B^{O} \rightarrow D^{*} \tau v$ and $B^{O} \rightarrow D^{*} \mu v$ (PRL115,111803(2015))

• In the B rest frame, three kinematics variables allow to distinguish $B^0 \rightarrow D^* \tau v$ and $B^0 \rightarrow D^* \mu v$

•
$$m^2_{miss} = (p_B - p_{D^*\mu})^2$$

- $q^2 = (p_B p_{D^*})^2$
- E_{l}^{*} : energy of lepton

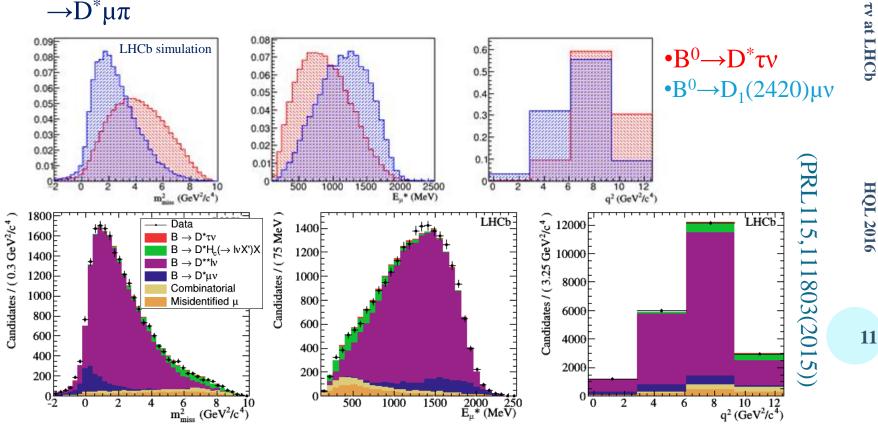
(PRL115,111803(2015))

• <u>Maximum Likelihood Fit to binned $m^2_{\underline{miss}}$, $E^*_{\underline{l}}$ and q^2 distributions with 3D templates representing $B^0 \rightarrow D^* \tau v$, $B^0 \rightarrow D^* \mu v$ and background sources</u>

Fit strategy

- Simulated and data templates are validated on separate fits on data control samples
- All uncertainties on the template shapes are incorpored in the fit:

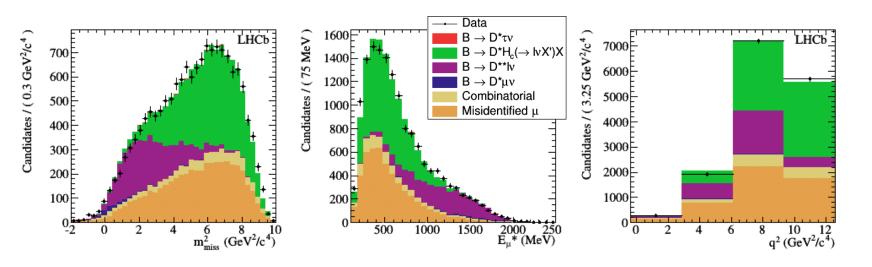
uncertainties due to finite number of simulated events → incorporated in the L using Beeston Barlow "lite" procedure
uncertainties with bin to bin correlation → incorportated via interpolation between nominal and alternative histograms (e.g factor form)



B

D*

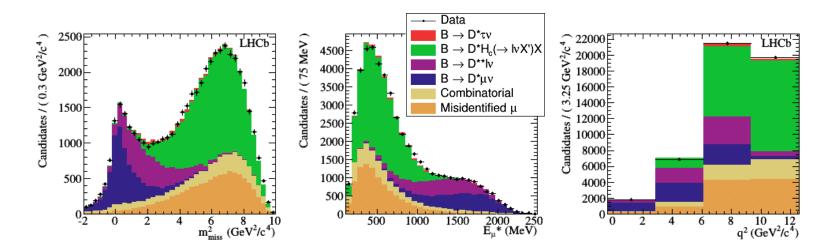
- $\mathbb{B} \to \mathbb{D}^{**} \mu \mathbb{V}_{\mu}$
- $B \rightarrow D^{**}\mu v_{\mu}$ refers to any higher charm resonances or not resonant hadronic mode
- Known resonances: $D_1(2420)$, $D_2^*(2420)$, $D_1'(2430)$
 - Separate templates for $D_1(2420), D_2*(2420), D_1'(2430)$
 - Use LLSW model (Phys.Rev.D.(1997) 57 307) with Isgur Wise function slope floated
 - Parameters constraints and validation of model performing a fit on B



• Semipletonic decay to heavier charmed hadrons decaying as $D^{**} \rightarrow D^*\pi\pi$

Since the resonances which contribute to final states and their form factors are not known \rightarrow a fit on the B \rightarrow D^{*} μ X π π control sample is performed to tuned the q² distribution

- The contribution of B \rightarrow D** $\mu\nu_{\mu}$ to semimuonic decay mode is ~12%
- Similar parametrization are used to semitauonic D** decay mode



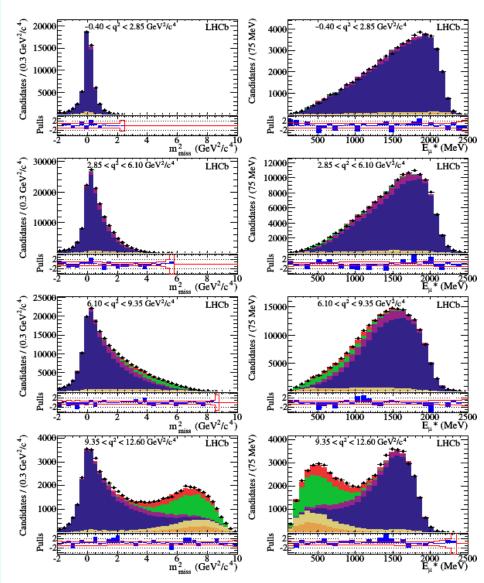
(PRL115,111803(2015))

 $B \rightarrow D^*H_c (\rightarrow \mu v_\mu X)X$

- These processes occur the 6-8% of normalization mode (PRL115,111803(2015))
- Anna Lupate • The templates are generated using a cocktail of simulated B⁰ and B⁺ decays in appropriate final states
- Isolation MVA selects track with loose Kaon ID \rightarrow select a sample enriched in $B \rightarrow D^* \mu K$
- Use to constrain, correct and justify the $B \rightarrow D^*H_c(\rightarrow \mu\nu_{\mu} X)X$ shapes

• Similar simulated sample for tertiary muon decays $B \rightarrow D^*D_s$ with $D_s \rightarrow \mu v_{\mu}$

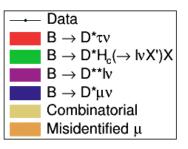
13


(PRL115,111803(2015))

- Hadrons misidentified as muons:
 - The kinematic distributions are derived from D*h sample
 - Sample of D* and A events are used to obtain the misidentification probabilities of p, K, π in data

- Combinatorial background:
 - Wrong sign $D^0\mu^-\pi^-$ events to determine the D^{*+} misreconstructed
 - Wrong sign $D^{*+}\mu^+$ sample to indentify the μ^+ from unrelated b hadron decays

Fit Result



• Fit determines the yields fraction of the two decays:

(PRL115,111803(2015))

$$\frac{N(B^{0} \to D^{*-} \tau^{+} \nu_{\tau})}{N(B^{0} \to D^{*-} \mu^{+} \nu_{\tau})} = (4.54 \pm 0.46)\%$$

- To convert to R(D*)
 - account for ϵ_{τ}/ϵ
 - $B(\tau \rightarrow \mu \nu \nu)$

q² bins

Systematics (PRL115,111803(2015))

B

 \rightarrow D* τv at LHCt

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$B^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B} \to D^{**}\mu^-\overline{\nu}_{\mu})$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
$\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

• Largest systematics from simulation statistics → reducible

- The uncertainties of the µ shape is determined by comparing results of two different method to extract the shape
- Depends on the control sample size → scale down with more
 data → run2

• The total systematic uncertaintiy is 3%

R(D*) measurement result

• LHCb measured (PRL115,111803(2015)):

 $R(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(syst)$

• SM calculations excpects (PRD 85094025 (2012)): $R(D^*) = 0.252 \pm 0.003$

- LHCb measurement is 2.1 σ from SM prevision

HFAG average of R(D) and R(D*) :

Combination average, including correlations, is 4σ from SM prevision

Recent R(D*) measurements		measurements	≈ 0.5 BaBar, PRL109,101802(2012)
BAB AR	0.332±0.024±0.018	Phys.Rev.D 88, 072012 (2013)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0.293±0.038±0.015	Phys.Rev.D 92, 072014 (2015)	0.35
Belle	0.302±0.030±0.011	Preliminary at Moriond EW 2016	0.3 0.25 R(D), PRD92,054510(2015) R(D*), PRD85,094025(2012) HE KNew 2010
LHCb THCp	0.336 ±0.027±0.030	Phys.Rev.Lett.115,111803 (2015)	$0.2 \xrightarrow{L} 1.1 $

17

Ongoing and future LHCb measurements

- R(D*) measurement with $\tau \rightarrow \pi \pi \pi (\pi^0) v$
 - external imput (Br($B \rightarrow D^* \pi \pi \pi$)) from B factories to reduce the systematics
- R(D) measurement
 - \bullet feed-down background from D^{\ast} and $D^{\ast\ast}$
- R(D_s) measurement
 - separation of D_s ground state from $D^*_{s(1,2,J)}$ ($\rightarrow D_s$ + neutral)
- $R(\Lambda_c)$ and $R(\Lambda_c^*)$ measurements
 - only LHCb measurement can explore Λ_b

Conclusions

 $B \to D^*$ τv at LHCb

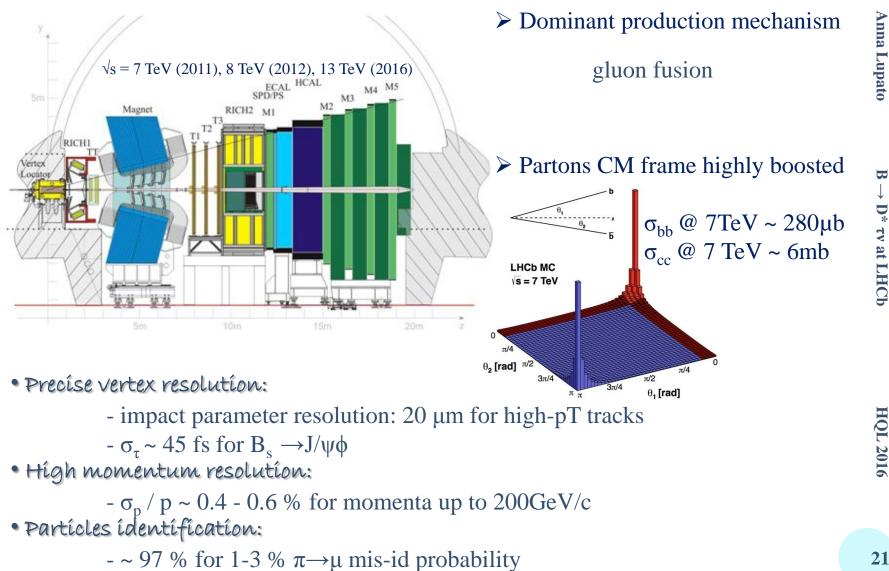
• Recent hints of Lepton Flavour Universality Violation and the longstanding tesion between $|V_{ub}|$ and $|V_{cb}|$ from exclusive and inclusive B decay mesaurements push to new measurements in semileptonic decays • A large class of SM extensions contain new interactions that involve third

generation of quarks and leptons

 \rightarrow semitauonic decays are under investigation

• LHCb performed the first measurement of $B \rightarrow X\tau v_{\tau}$ at a hadron collider: $R(D^*)$

- The precision result similar to B factories measurements
- The dominant systematic is the MC statistic \rightarrow fast simulation will allow to improve this
- Most other systematic scale with data or control samples \rightarrow improvements with LHC run2


The LHCb R(D*) measurement results in agreement at 2.1 with respect to SM
The R(D*) and R(D) averages combination of the measurements from LHCb and B factories is 4σ discrepant with respect to SM prevision

Thank you for your attention

20

The LHCb@LHC

• Single arm spectrometer optimized for beauty and charm physics

• High trigger efficiencies:

- ~ 90 % for dimuon channels, ~ 30 % for multi-body hadronic final states