Measurement of $B^+ \rightarrow K^+ \tau^+ \tau^-$, $B \rightarrow K^* l^+ l^-$ and $B \rightarrow K \pi^+ \pi^- \gamma$ decays at BaBar

Benjamin Oberhof LNF INFN, Frascati, Italy

on behalf of the BaBar collaboration

HQL2016, Blacksburg, Virginia 26th May 2016

Outline

- Branching fraction of $B^+ \to K^+ \tau^+ \tau^-$
- Angular analysis of $B \rightarrow K^*l^+l^ (l=e,\mu)$ PRD 93, 052015 (2016)
- Time dependent analysis of $B^0 \rightarrow K_s \pi^+ \pi^- \gamma$
- Study of $K^+\pi^+\pi^-$ system in $B^+ \rightarrow K^+\pi^+\pi^-\gamma$ PRD 93, 052013 (2016)

Full dataset 471×10° BB pairs

• Summary

$B^+ \rightarrow K^+ \tau^+ \tau^-$: overview

- Heavy τ mass impose upper limit on kaon momentum (~1.5 GeV/c) \rightarrow no long distance contribution
- Hadronic B_{tag} reconstruction $B_{tag} \rightarrow DX$, $D=D^{(*)0}$, $D^{(*)\pm}$, $D_{s}^{*\pm}$ or J/ ψ , X=combination of up to 5 π and/or K's

Three different final states considered here:

- Electron: $\tau^+ \rightarrow e^+ \nu_e \nu_{\tau}, \tau^- \rightarrow e^- \nu_e \nu_{\tau}$
- Muon: $\tau^+ \rightarrow \mu^+ \nu_{\mu} \nu_{\tau}, \tau^- \rightarrow \mu^- \nu_{\mu} \nu_{\tau}$
- Mixed: $\tau^+ \rightarrow e^+ \nu_e \nu_{\tau}, \tau^- \rightarrow \mu^- \nu_{\mu} \nu_{\tau} (+ CC)$
- Cut and count analysis

- $m_{ES} > 5.27 \text{ GeV/c}^2$, $|\Delta E| < 0.12 \text{ GeV}$ and $E_{sig, miss} > 0$
- Exactly 3 tracks + PID

aboratori Nazionali di Frascat

- Vetoes: J/ψ on m_{II} , D^0 on m_{IK} , π^0 on any γ pair
- Main background: $B_{sig} \rightarrow D^{(*)}lv_1$ (peak.) + contr. from uds & mis-reco B_{tag} (comb.)
- Background suppression using MLP NN with 7 input variables

• Final cut on MLP chosen in order to get best value on the 90% CL UL

 $m_{\rm ES} = \sqrt{E_{beam}^2 - \vec{p}_{B_{\rm tag}}^2}$

 $B^+ \rightarrow K^+ \tau^+ \tau^-$: results

Event yield:

Mode	ϵ_{sig}	N_{bkg}	N_{obs}
Electron	1.11 ± 0.12	49.4 ± 5.3	$45\pm~6.7$
Muon	1.29 ± 0.21	45.8 ± 5.1	39 ± 6.2
Electron-Muon	2.05 ± 0.26	59.2 ± 6.2	$92{\pm}9.6$
Combined	$4.77{\pm}~0.42$	$154.4 {\pm} 9.6$	$176{\pm}13.2$

BABAR preliminary

5

Re-weighting reduced di-tau

Systematics

			man distribution according
	Source	Estimate	to lattice QCD vs Light Cone
	Theoretical Uncertainty	3%	Sum Rule model
	B _{tag} Yield	1.2% , 1.6	5%
	Particle Identification	~5%	contributions
	π^0 Veto	3%	with toy MC
	MLP Cut	2.6%	
	B⁺→D⁰ I⁺v, , Dº- control sample	→K⁺π⁻	From MC-data comparison using control samples
Resu	Iting branching fraction:		
	$\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) = (1$	$31^{+0.66}_{-0.61}$ (s	stat.) $^{+0.35}_{-0.25}$ (sys.)) × 10 ⁻³
Uppe	er limit at the 90 % confi	dence lev	rel: 2.25×10^{-3}

BABAR preliminary

$B \rightarrow K^*l^+l^-$: observables

Operator Product Expansion: $H_{E\!f\!f} \propto \sum_{i=1}^{10} C_i O_i$ Short-distance/ perturbative Long-distance/ non-perturbative

Fisica Nuclear

aboratori Nazionali di Frascati

- Three short-distance Wilson coefficients

 C⁷_{eff} from photon penguin (b→sγ) ~0.33
 C⁹_{eff} (C¹⁰_{eff}) from vector (axial-vector) parts of the Z, W box
- Decay rate can be parametrized by φ , θ_{K} and θ_{I}
- Integrating out φ , and θ_{K} or θ_{I} alternately:

$$\frac{1}{\Gamma(q^2)} \frac{\mathrm{d}\Gamma}{\mathrm{d}(\cos\theta_K)} = \frac{3}{2} F_L(q^2) \cos^2\theta_K + \frac{3}{4} (1 - F_L(q^2))(1 - \cos^2\theta_K)$$

 $\mathbf{F}_{\mathbf{L}}$: K^{*} longitudinal polarization $\mathbf{A}_{\mathbf{FB}}$: lepton forward-backward asymmetry

$$egin{array}{ll} rac{1}{\Gamma(q^2)}rac{{
m d}\Gamma}{{
m d}(\cos heta_\ell)} &=& rac{3}{4}F_L(q^2)(1-\cos^2 heta_l) + \ && rac{3}{8}(1-F_L(q^2))(1+\cos^2 heta_l) + \ && {\cal A}_{FB}(q^2)\cos heta_l \,. \end{array}$$

$B \rightarrow K^*l^+l^-$: final states

$B \rightarrow K^*l^+l^-$: signal selection

- e, μ , K, π particle ID, $p_1 > 0.3$ GeV/c
- $0.7 \le M_{K\pi} \le 1.1 \text{ GeV/c}^2, 0.115 \le M(\pi^0) \le 0.155 \text{ GeV/c}^2$
- Bagged decision trees (BDTs) used to construct LHratio L_R used in fitting, along with m_{ES} , $M_{K\pi}$
- Separate BDTs for low ($\langle J/\psi \rangle$) and high q² regions
- J/ψ , $\psi(2S)$ regions vetoed, use as control samples

- F_L and A_{FB} are extracted from a simultaneous fit across K^{*} final states in 3 steps:
- 1st fit: $m_{ES} > 5.20$, $M_{K\pi}$, L_{R} for every mode separately; fix results for fits 2,3
- 2nd fit: $m_{ES} > 5.27$ dataset, fit $\cos(\theta_{K})$, extract F_{L} , fix results for fit 3
- 3rd fit: fit $\cos(\theta_1)$, extract A_{FB}

$B \rightarrow K^*l^+l^-$: fit model

PRD 93, 052015 (2016)

 Several classes of events: truth-matched signal, cross-feed signal, physics backgrounds, combinatoric background, hadronic mis-id backgrounds (μμ states only)

tituto Nazionale

Laboratori Nazionali di Frascati

$B \rightarrow K^* l^+ l^-$: fit & systematics PRD 93, 052015 (2016)

Systematic contributions:

- purely statistical uncertainties in the parameters obtained from the initial 3-d m_{ES}, m_{K π} fit which are used in the angular fits
- F_L statistical uncertainty, which is propagated into the A_{FB} fit
- modeling of the random combinatorial background pdfs
- signal angular efficiencies
- Several other sources studied
 → negligible

 $\begin{array}{l} B^{\scriptscriptstyle +} \rightarrow K_{_S} \pi^{\scriptscriptstyle +} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \\ B^{\scriptscriptstyle +} \rightarrow K_{_S} \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} & - & - & \text{Signal} \\ B^{\scriptscriptstyle +} \rightarrow K^{\scriptscriptstyle +} \pi^{_0} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \end{array}$

Broad agreement with other measurements

 $B \rightarrow K\pi^+\pi^-\gamma$: overview

- In SM: left-handed quarks, right-handed antiquarks → left handed photon
- New Physics, if present in the loop may enhance right-handed photons

 $\begin{array}{l} \mathsf{SM} \Rightarrow \mathbf{b} \rightarrow s \gamma_{\mathrm{L}} \ \mathrm{or} \ \overline{\mathbf{b}} \rightarrow \overline{s} \gamma_{\mathrm{R}} \ \Rightarrow \\ \mathsf{CP} \ \text{asymmetry parameters} \approx \mathbf{0} \end{array}$

$$NP \Rightarrow b \rightarrow s\gamma_{L,R} \text{ or } \overline{b} \rightarrow \overline{s}\gamma_{R,L} \Rightarrow$$

CP asymmetry parameters $\neq 0$

$$B^{\circ} \xrightarrow{B^{\circ}} f\gamma$$

 $b \xrightarrow{V_{tb}} W \xrightarrow{V_{ts}} V_{ts}$

1/2)

$$\begin{aligned} \mathcal{A}_{CP}(\Delta t) &= \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) - \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) + \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)} \\ &= \mathcal{S}_{f_{CP}}\sin\left(\Delta m_{d}\Delta t\right) - \mathcal{C}_{f_{CP}}\cos\left(\Delta m_{d}\Delta t\right) \end{aligned}$$

$$\frac{\text{Observable}}{\mathcal{S}_{f_{CP}}} \stackrel{\text{SM}}{\propto} \frac{m_s}{m_b} \simeq 0.02$$

Goal: measurement of S_f in B $\rightarrow K_s \rho^0 \gamma$ decays

- Need amplitude analysis to calculate dilution factor
- We use $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ to determine $D_{K\rho\gamma}$ because of the higher signal yield assuming isospin symmetry
- $K^+\pi^+\pi^-\gamma$ final state is produced by resonances that decay via intermediate $K^{*0}(892)\pi^+$ or $K^+\rho^0$ states \rightarrow determine 3-body resonance content of $m_{K\pi\pi}$

 $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ analysis

- Unbinned maximum likelihood fit to m_{ES}^{-} , ΔE and Fisher discriminant to extract B⁺ $\rightarrow K^{+}\pi^{+}\pi^{-}\gamma$ signal yield Fisher, Annals Eugen. 7, 179 (1936)
- Extract signal $m_{K\pi\pi}$, $m_{K\pi}$ & $m_{\pi\pi}$ spectra using sPlot technique Pivk et al., NIM A555, 356 (2005)
- Fit model: $m_{K\pi\pi}$ distribution as a coherent sum of 5 resonances $[K_1(1270)^+, K_1(1400)^+, K^*(1410)^+, K^*(1680)^+, K^*_2(1430)^+]$ by relativistic B-W line shapes
- We measure a branching fraction of $B(B^+ \rightarrow K^+\pi^+\pi^-\gamma) = (24.5 \pm 0.9 \pm 1.2) \times 10^{-6}$

Mode	$\mathcal{B}(B^+ \to \text{Mode}) \times \mathcal{B}(K_{\text{res}} \to K^+ \pi^+ \pi^-) \times 10^-$	$_{6}\mathcal{B}(B^+ \to \mathrm{Mode}) \times 10^{-6}$	Previous world average [17] $(\times 10^{-6})$
$B^+ \to K^+ \pi^+ \pi^- \gamma$	••••	$24.5\pm0.9\pm1.2$	27.6 ± 2.2
$\overline{K_1(1270)^+\gamma}$	$14.5^{+2.1+1.2}_{-1.4-1.2}$	$44.1^{+6.3}_{-4.4}{}^{+3.6}_{-3.6}\pm4.6$	43 ± 13
$K_1(1400)^+\gamma$	$4.1^{+1.9}_{-1.2}{}^{+1.2}_{-1.0}$	$9.7^{+4.6}_{-2.9}{}^{+2.8}_{-2.3}\pm0.6$	<15 at 90% CL
$K^*(1410)^+\gamma$	$11.0^{+2.2}_{-2.0}{}^{+2.1}_{-1.1}$	$27.1^{+5.4}_{-4.8}{}^{+5.2}_{-2.6}\pm2.7$	n/a
$K_2^*(1430)^+\gamma$	$1.2\substack{+1.0+1.2\\-0.7-1.5}$	$8.7^{+7.0}_{-5.3}{}^{+8.7}_{-10.4}\pm0.4$	14 ± 4
$K^*(1680)^+\gamma$	$15.9^{+2.2+3.2}_{-1.9-2.4}$	$66.7^{+9.3}_{-7.8}{}^{+13.3}_{-10.0}\pm5.4$	<1900 at 90% CL
	F	PRD 93, 052013 (2	016) 14
	$ \frac{\text{Mode}}{B^+ \to K^+ \pi^+ \pi^- \gamma} \\ \frac{K_1(1270)^+ \gamma}{K_1(1400)^+ \gamma} \\ \frac{K^*(1410)^+ \gamma}{K_2^*(1430)^+ \gamma} \\ \frac{K^*(1680)^+ \gamma}{K_2^*(1680)^+ \gamma} $	$ \frac{Mode}{\mathcal{B}(B^+ \to Mode) \times \mathcal{B}(K_{res} \to K^+ \pi^+ \pi^-) \times 10^-}{\mathcal{B}^+ \to K^+ \pi^+ \pi^- \gamma} \cdots \overline{K_1(1270)^+ \gamma} \qquad 14.5^{+2.1+1.2}_{-1.4-1.2} \times K_1(1400)^+ \gamma \qquad 4.1^{+1.9+1.2}_{-1.2-1.0} \times (1410)^+ \gamma \qquad 11.0^{+2.2+2.1}_{-2.0-1.1} \times (1410)^+ \gamma \qquad 11.0^{+2.2+2.1}_{-2.0-1.1} \times (1430)^+ \gamma \qquad 1.2^{+1.0+1.2}_{-0.7-1.5} \times (1680)^+ \gamma \qquad 15.9^{+2.2+3.2}_{-1.9-2.4} $	$\frac{Mode}{\mathcal{B}(K_{res} \to K^{+}\pi^{+}\pi^{-}) \times 10^{-6}}{\mathcal{B}(K_{res} \to K^{+}\pi^{+}\pi^{-}) \times 10^{-6}} \mathcal{B}(B^{+} \to Mode) \times 10^{-6}}{B^{+} \to K^{+}\pi^{+}\pi^{-}\gamma} \cdots 24.5 \pm 0.9 \pm 1.2}$ $\frac{B^{+} \to K^{+}\pi^{+}\pi^{-}\gamma \cdots 24.5 \pm 0.9 \pm 1.2}{K_{1}(1270)^{+}\gamma 14.5^{+2.1+1.2}_{-1.4-1.2}} 44.1^{+6.3+3.6}_{-4.4-3.6} \pm 4.6}{K_{1}(1400)^{+}\gamma 4.1^{+1.9+1.2}_{-1.2-1.0}} 9.7^{+4.6+2.8}_{-2.6} \pm 0.6}{K^{*}(1410)^{+}\gamma 11.0^{+2.2+2.1}_{-2.0-1.1}} 27.1^{+5.4+5.2}_{-4.8-2.6} \pm 2.7}{K_{2}^{*}(1430)^{+}\gamma 1.2^{+1.0+1.2}_{-0.7-1.5}} 8.7^{+7.0+8.7}_{-5.3-10.4} \pm 0.4}{K^{*}(1680)^{+}\gamma 15.9^{+2.2+3.2}_{-1.9-2.4}} 66.7^{+9.3+13.3}_{-7.8-10.0} \pm 5.4}$

$K\pi$ analysis in $B \rightarrow K\pi\pi\gamma$

- We extract fit fractions and branching fractions from ML fit to $m_{K\pi}$ sPlot
- For $(K\pi)_R$, we include $K^*_{0}(892)$ (P-wave) and 0^+ (S-wave) components, for $(\pi\pi)_R$ we include $\rho^0(770)$ (P-wave)
- We include also Kπ and ππ P- and S-wave interference terms respectively
- Model K^{*0}(892) by relativistic BW, ρ⁰(770) by Gounaris-Sakurai line shape and 0⁺ by LASS (R + NR) parameterization
 - We measure dilution factor for $0.6 < m_{\pi\pi} < 0.9, m_{K\pi} < 0.845,$ $m_{K\pi} > 0.945$ and $m_{K\pi\pi} < 1.8 \text{ GeV/c}^2$

 $\mathcal{D}_{K^0_S \rho \gamma} = -0.78^{+0.19}_{-0.17}$

Mode	$\mathcal{B}(B^+ \to \text{Mode}) \times \mathcal{B}(R \to h\pi) \times 10^{-6}$	$\mathcal{B}(B^+ \to \text{Mode}) \times 10^{-6}$	Previous world werage [17] $(\times 10^{-6})$
$K^*(892)^0\pi^+\gamma$	$15.6\pm0.6\pm0.5$	$23.4\pm0.9^{+0.8}_{-0.7}$	20^{+7}_{-6}
$K^+ ho(770)^0\gamma$	$8.1\pm0.4^{+0.8}_{-0.7}$	$8.2 \pm 0.4 \pm 0.8 \pm 0.02$	<20 at 90% CL
$(K\pi)^{*0}_0\pi^+\gamma$	$10.3\substack{+0.7+1.5\\-0.8-2.0}$		n/a
$\overline{(K\pi)^0_0\pi^+\gamma~(\mathrm{NR})}$		$9.9\pm0.7^{+1.5}_{-1.9}$	<9.2 at 90% CL
$K_0^*(1430)^0 \pi^+ \gamma$	$0.82\pm0.06^{+0.12}_{-0.16}$	$1.32^{+0.09}_{-0.10}{}^{+0.20}_{-0.26}\pm0.14$	n/a

This is the first observation of $(K\pi)^{*0}_{0}\pi^{+}\gamma$ NR-contribution

PRD 93, 052013 (2016)

 $B^0 \rightarrow K_{s}\pi^+\pi^-\gamma$: results PRD 93, 052013 (2016)

- Selection of $B^0 \rightarrow K_s \pi^+ \pi^- \gamma$ events is identical to that of the $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ mode $|m_{\pi\pi}^- m_{Ks}^-| < 11 \text{ MeV/c}^2$
- We perform an unbinned extended ML fit to extract $B^0 \rightarrow K_s \pi^+ \pi^- \gamma$ event yield along with time-dependent CP asymmetry parameters $S_{K\pi\pi\gamma}$ and $C_{K\pi\pi\gamma}$

• We find:
$$N_{\text{sig}} = 243 \pm 24_{-17}^{+21}$$

signal candidates, resulting in
 $\mathcal{B}(B^0 \to K^0 \pi^+ \pi^- \gamma) = (20.5 \pm 2.0_{-2.2}^{+2.6}) \times 10^{-6}$
 $\mathcal{S}_{K_S^0 \pi^+ \pi^- \gamma} = -0.14 \pm 0.25 \pm 0.03$
 $\mathcal{C}_{K_S^0 \pi^+ \pi^- \gamma} = -0.39 \pm 0.20_{-0.02}^{+0.03}$
and using previously calculated $D_{\text{K}\rho\gamma}$
 $\mathcal{S}_{K_S^0 \rho\gamma} = -0.18 \pm 0.32_{-0.05}^{+0.06}$
in agreement with SM

Summary

- Babar continues to produce exciting physics results
- First search for $B^+ \rightarrow K^+ \tau^+ \tau^-$, no significant signal is observed and an upper limit at 90% CL is set
- First results for the angular analysis of $B^+ \rightarrow K^{*+} l^+ l^-$
- Inclusive analysis of $B \to K^* l^+ l^-$ broad agreement with SM and other experimental results, some tension with SM in low energy bins
- We have measured the time dependent asymmetry parameter $S_{K\rho\gamma}$ and found it to be in agreement with SM and previous measurements
- We have studied the decay $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ and we have measured the intermediate resonant amplitudes and their branching fractions, many of which for the first time (or world best)

Additional Slides

The BaBar experiment

- BaBar at PEP-II asymmetric e⁺-e⁻ collider at Stanford Linear Accelerator Center
- Operated (mainly) at Y(4S) CM energy
- ≈500 fb⁻¹ of e⁺-e⁻ collisions recorded from 1999 to 2008

- Tracking: 40 layer drift chamber + 5 layer silicon vertex detector
- PID: π/K separation using dE/dx and quartz Ring Imaging Cherenkov Detector
- CsI(Tl) calorimeter for γ and e
- 1.5 T superconducting solenoid
- Muon detectors in the field flux return

$B \rightarrow K^{(*)}l^+l^-$: motivation

- Search for new physics (NP) in intensity frontier \rightarrow new "virtual" particles in loops
- $B \rightarrow K^{(*)}l^+l^-$: flavor changing neutral current (FCNC) process, lowest order contribution from photon, Z penguins and W box in SM \rightarrow theoretically clean
- New physics can enter at same order as $SM \rightarrow$ unambiguous

- Complementary to searches for pure leptonic decays (e.g. $B_s \rightarrow \mu^+\mu^-$) and lepton universality (e.g. $B(B\rightarrow D^*\mu\nu)/B(B\rightarrow D^*e \tau \nu)$)
- Significant deviations reported by various experiments

LHCb: JHEP 02 (2016) 104

$B \rightarrow K^*l^+l^-$: numerical angular results

	$B^+ \to K^{*+} \ell^+ \ell^-$	$B^0 \to K^{*0} \ell^+ \ell^-$	$B\to K^*\ell^+\ell^-$
q_{0}^{2}	$+0.05^{+0.09}_{-0.10}{}^{+0.02}_{-0.10}$	$+0.43^{+0.12}_{-0.13}{}^{+0.02}_{-0.02}$	$+0.24^{+0.09}_{-0.08}{}^{+0.02}_{-0.02}$
q_1^2	$-0.02^{+0.18}_{-0.13}{}^{+0.09}_{-0.14}$	$+0.34^{+0.15}_{-0.10}{}^{+0.15}_{-0.02}$	$+0.29^{+0.09}_{-0.12}{}^{+0.13}_{-0.05}$
q_2^2	$-0.24\substack{+0.27}_{-0.39}\substack{+0.18\\-0.10}$	$+0.18^{+0.16}_{-0.12}_{-0.10}_{-0.10}$	$+0.17^{+0.14}_{-0.15}^{+0.02}_{-0.02}$
q_{3}^{2}	$+0.15\substack{+0.14}_{-0.13}\substack{+0.05\\-0.08}$	$+0.48^{+0.14}_{-0.16}^{+0.05}_{-0.05}$	$+0.30^{+0.12}_{-0.11}{}^{+0.05}_{-0.07}$
q_4^2	$+0.05\substack{+0.27}_{-0.16}\substack{+0.16\\-0.15}$	$+0.45^{+0.09}_{-0.14}{}^{+0.06}_{-0.06}$	$+0.34^{+0.15}_{-0.10}{}^{+0.07}_{-0.10}$
q_5^2	$+0.72^{+0.20}_{-0.31}{}^{+0.10}_{-0.21}$	$+0.48^{+0.12}_{-0.12}{}^{+0.02}_{-0.11}$	$+0.53\substack{+0.10+0.07\\-0.12-0.14}$
	$B^+ \to K^{*+} \ell^+ \ell^-$	$B^0 \to K^{*0} \ell^+ \ell^-$	$B\to K^*\ell^+\ell^-$
q_0^2	$B^+ o K^{*+} \ell^+ \ell^- + 0.32^{+0.18}_{-0.18} + 0.08}_{-0.18}$	$B^0 ightarrow K^{*0} \ell^+ \ell^- \ + 0.06^{+0.15}_{-0.18} {}^{+0.06}_{-0.05}$	$B \to K^* \ell^+ \ell^- + 0.21^{+0.10}_{-0.15} + 0.09$
q_0^2 q_1^2	$B^+ ightarrow K^{*+} \ell^+ \ell^- \ +0.32^{+0.18}_{-0.18}_{-0.05} \ +0.44^{+0.20}_{-0.22}_{-0.16}_{-0.16}$	$\begin{array}{c} B^0 \to K^{*0} \ell^+ \ell^- \\ + 0.06^{+0.15}_{-0.18} {}^{+0.06}_{-0.05} \\ - 0.12^{+0.23}_{-0.21} {}^{+0.10}_{-0.21} \end{array}$	$\begin{array}{c} B \to K^* \ell^+ \ell^- \\ + 0.21^{+0.10}_{-0.15} {}^{+0.09}_{-0.09} \\ + 0.10^{+0.16}_{-0.15} {}^{+0.08}_{-0.19} \end{array}$
q_0^2 q_1^2 q_2^2	$\begin{array}{c} B^+ \to K^{*+} \ell^+ \ell^- \\ + 0.32^{+0.18}_{-0.18}_{-0.05} \\ + 0.44^{+0.20}_{-0.22}_{-0.16} \\ + 0.70^{+0.21}_{-0.38}_{-0.49} \end{array}$	$\begin{array}{c} B^0 \to K^{*0} \ell^+ \ell^- \\ + 0.06^{+0.15}_{-0.18} {}^{+0.06}_{-0.05} \\ - 0.12^{+0.23}_{-0.21} {}^{+0.21}_{-0.21} \\ + 0.33^{+0.21}_{-0.30} {}^{+0.11}_{-0.11} \end{array}$	$\begin{array}{c} B \rightarrow K^* \ell^+ \ell^- \\ + 0.21 \substack{+0.10 + 0.07 \\ -0.15 - 0.09 \\ + 0.10 \substack{+0.16 + 0.08 \\ -0.15 - 0.19 \\ + 0.44 \substack{+0.15 + 0.14 \\ -0.18 - 0.11 \end{array}}$
$q_0^2 \ q_1^2 \ q_2^2 \ q_3^2$	$\begin{array}{c} B^+ \to K^{*+} \ell^+ \ell^- \\ + 0.32^{+0.18}_{-0.18}_{-0.05} \\ + 0.44^{+0.20}_{-0.22}_{-0.16} \\ + 0.70^{+0.21}_{-0.38}_{-0.49} \\ + 0.11^{+0.22}_{-0.28}_{-0.20} \end{array}$	$\begin{array}{c} B^0 \to K^{*0} \ell^+ \ell^- \\ + 0.06^{+0.15}_{-0.18} {}^{+0.05}_{-0.05} \\ - 0.12^{+0.23}_{-0.21} {}^{+0.21}_{-0.21} \\ + 0.33^{+0.21}_{-0.30} {}^{+0.11}_{-0.11} \\ + 0.17^{+0.14}_{-0.16} {}^{+0.08}_{-0.08} \end{array}$	$\begin{array}{c} B \rightarrow K^* \ell^+ \ell^- \\ + 0.21 \substack{+0.10 + 0.07 \\ -0.15 - 0.09 \\ + 0.10 \substack{+0.16 + 0.08 \\ -0.15 - 0.19 \\ + 0.44 \substack{+0.15 + 0.14 \\ -0.18 - 0.11 \\ + 0.15 \substack{+0.14 + 0.08 \\ -0.12 - 0.05 \end{array}}$
q_0^2 q_1^2 q_2^2 q_3^2 q_4^2	$\begin{array}{c} B^+ \to K^{*+} \ell^+ \ell^- \\ + 0.32^{+0.18}_{-0.18} {}^{+0.08}_{-0.05} \\ + 0.44^{+0.20}_{-0.22} {}^{+0.13}_{-0.16} \\ + 0.70^{+0.21}_{-0.38} {}^{+0.49}_{-0.49} \\ + 0.11^{+0.22}_{-0.28} {}^{+0.20}_{-0.20} \\ + 0.21^{+0.32}_{-0.33} {}^{+0.24}_{-0.24} \end{array}$	$\begin{array}{c} B^0 \rightarrow K^{*0} \ell^+ \ell^- \\ + 0.06^{+0.15}_{-0.18} {}^{+0.06}_{-0.18} {}^{+0.05}_{-0.12} \\ - 0.12^{+0.23}_{-0.21} {}^{+0.21}_{-0.21} \\ + 0.33^{+0.21}_{-0.30} {}^{+0.11}_{-0.16} \\ + 0.17^{+0.14}_{-0.16} {}^{+0.08}_{-0.08} \\ + 0.40^{+0.12}_{-0.18} {}^{+0.16}_{-0.16} \end{array}$	$\begin{array}{c} B \rightarrow K^* \ell^+ \ell^- \\ + 0.21 \substack{+0.10 + 0.07 \\ -0.15 - 0.09 \\ + 0.10 \substack{+0.16 + 0.08 \\ -0.15 - 0.19 \\ + 0.44 \substack{+0.15 + 0.14 \\ -0.18 - 0.11 \\ + 0.15 \substack{+0.14 + 0.08 \\ -0.12 - 0.05 \\ + 0.42 \substack{+0.11 + 0.14 \\ -0.17 - 0.13 \end{array}}$

 $F_{
m L}$

 $A_{\rm FB}$

$\mathbf{B} \to \mathbf{K}^* \mathbf{l}^+ \mathbf{l}^-: \mathbf{A}_{\mathrm{FB}} \& \mathbf{F}_{\mathrm{L}}$

 $1.0 < q_0^2 < 6.0 \text{ GeV}$

 $B \rightarrow K^* l^+ l^-: A_{FB} \& F_L @LHCb$

LHCb: JHEP 02 (2016) 104

$B \rightarrow K^* l^+ l^-: P_2$

$P_2 = (2/3) A_{FB}/(1 F_1) \rightarrow$ reduced theory uncertainty

$B \rightarrow K^*l^+l^-$: fit model

- Truth-matched signal pdfs:
 - Gaussian m_{ES} , relativistic Breit-Wigner $M_{K\pi}$ both from J/psi data
 - LH ratio and angular efficiency functions from signal MC
- Crossfeed signal pdfs:
 - m_{ES} , $M_{K\pi}$, LH ratio and angular shapes from MC, normalization relative to fit signal yield

- Physics backgrounds:
 - m_{ES} , $M_{K\pi}$, LH ratio fixed shapes and normalizations from MC
 - Several sources, all trivial except charmonium
- Random combinatoric background:
 - m_{ES} Argus, floated slope, fixed single-valued endpoint
 - $M_{K_{\pi}}$ taken from LFV events selected identically to ee/mm samples
 - LH ratio from generic MC
 - Angular shapes from m_{ES} sideband and LFV events
- Hadronic mis-id backgrounds (di-muon final states only)
 - Fixed m_{ES} , $M_{K\pi}$, LH ratio and angular shapes plus