

SEARCH FOR CP VIOLATION IN RADIATIVE AND HADRONIC D⁰ DECAYS AT BELLE

on behalf of the Belle Collaboration

The XIIIth International Conference on Heavy Quarks and Leptons 26 May 2016

1/21

Outline of the talk

We present:

• Preliminary results of the measurement of branching fraction and *CP* asymmetry in decays

$$D^0 o V\gamma$$
 $V = \phi, \overline{K}^{*0}, \rho^0$

on 943 fb $^{-1}$ of Belle data.

• Results of the study of the rare decay

 $D^0 \to \gamma \gamma$

on 832 fb $^{-1}$ of Belle data.

• Results of the measurement of CP asymmetry in decay

$$D^0 \to \pi^0 \pi^0$$

on 966 fb⁻¹ of Belle data.

Analysis $D^0 \rightarrow V\gamma$

Motivation:

- Decays $D^0 \rightarrow \rho^0 \gamma$ not yet observed
- Sensitive to New Physics in terms of A_{CP} measurement:
 - $\circ~$ SM prediction: $\mathcal{O}(10^{-3})$
 - $\circ\,$ SM extension with chromomagnetic dipole operators: up to several % for $V=\phi,\,\rho^0$ (Phys. Rev. Lett. 109, 171801)
- No A_{CP} measurement yet in $D^0 \to V \gamma$

Previous results:

- Belle (PRL 92, 101803 (2004)): $\mathcal{B}(D^0 \to \phi \gamma) = 2.60^{+0.70}_{-0.61}(stat.)^{+0.15}_{-0.17}(syst.) \times 10^{-5}$
- BaBar (PRD 78, 071101 (2008)): $\mathcal{B}(D^0 \to \phi \gamma) = 2.73 \pm 0.30 \pm 0.26 \times 10^{-5}$ $\mathcal{B}(D^0 \to \overline{K}^{*0}\gamma) = 3.22 \pm 0.20 \pm 0.27 \times 10^{-4}$

Analysis method

• *B* and *A_{CP}* extracted through normalisation channels to avoid several sources of systematic uncertainties

Decay chains: $D^0 \rightarrow \phi \gamma \rightarrow K^+ K^- \gamma$

- $D^{0} \to \overline{K}^{*0} \gamma \to \overline{K}^{-} \pi^{+} \gamma$ $D^{0} \to \rho^{0} \gamma \to \pi^{+} \pi^{-} \gamma$
- Branching fraction:

$$\mathcal{B}_{sig} = \mathcal{B}_{norm} imes rac{N_{sig}}{N_{norm}} imes rac{arepsilon_{norm}}{arepsilon_{sig}}$$

• CP asymmetry:

$$A_{\text{raw}} = \frac{N(D^0) - N(\overline{D^0})}{N(D^0) + N(\overline{D^0})}$$
$$A_{\text{raw}} = A_{CP} + A_{\text{FB}} + A_{\varepsilon}^{\pm}$$
$$A_{CP}^{\text{sig}} = A_{\text{raw}}^{\text{sig}} - A_{\text{raw}}^{\text{norm}} + A_{CP}^{\text{norm}}$$

Search for CP violation in D⁰ decays

 $D^0 \rightarrow K^+ K^-$

 $D^0 \rightarrow K^- \pi^+$ $D^0 \rightarrow \pi^+ \pi^-$

Normalisation channels:

Tara Nanut

Analysis method

- Flavour tag: D^0 from decay $D^{*+} \rightarrow D^0 \pi_s^+$ (also background suppression with requirement on $\Delta m = m(D^{*+}) - m(D^0)$)
- Signal extraction: simultaneous 2d fit in $m(D^0)$ and $\cos(\theta_H)$

- Normalisation modes:
 - Based on previous Belle analysis of same modes (Phys.Lett. B753, 412 (2016))
 - Signal extraction: background subtraction in signal window (SW) Estimate background in SW from sidebands (LSB, USB):

Dominant background

- From decays with $\pi^0(\to\gamma\gamma)$, one photon missed in reconstruction
- Main peak in $m(D^0)$ overlapping with signal peak
- Lots of decay modes (especially \overline{K}^{*0} , ρ^0), high $\mathcal{B}rs$

- Devise dedicated π^0 veto to suppress:
 - \circ combine photon with all others, take diphoton mass closest to $m(\pi^0)$
 - $\circ\,$ require once $E_{\gamma_2}>75$ MeV and once $E_{\gamma_2}>30$ MeV
 - $\circ\,$ feed these two variables to the neural network
- Final veto rejects 60% of background and 15% of signal

Fit results $D^0 \rightarrow \phi \gamma$

Efficiency: 9.6%

Signal yield: 524 ± 35

Raw asymmetry: -0.091 \pm 0.066

Fit results $D^0 \rightarrow \phi \gamma$

Search for CP violation in D⁰ decays

Fit results $D^0 \rightarrow \overline{K^{*0}\gamma}$

Efficiency: 7.8%

Signal yield: 9104 ± 396

Raw asymmetry: -0.002 \pm 0.020

Tara Nanut

Fit results $D^0 \to \overline{K}^{*0} \gamma$

Search for CP violation in D⁰ decays

Fit results $D^0 \rightarrow \rho^0 \gamma$

Efficiency: 6.8%

Signal yield: 500 ± 85

Raw asymmetry: 0.064 ± 0.151

Tara Nanut

Fit results $D^0 \rightarrow \rho^0 \gamma$

Search for CP violation in D⁰ decays

Normalisation channels

	Efficiency	Yield	$A_{raw}[imes 10^{-3}]$
K^+K^-	22.7%	362274	2.2 ± 1.7
$K^-\pi^+$	27.0%	4.02×10^{6}	1.3 ± 0.5
$\pi^+\pi^-$	21.4%	127683	8.2±3.0

Systematic uncertainties

[$D^0 \to \phi \gamma$	D^0	$0 \to \overline{K}^{*0} \gamma$	$D^0 o ho^0 \gamma$	
Br[%]	$A_{CP} [\times 10^{-3}]$	Br[%]	$A_{CP} [\times 10^{-3}]$	Br[%]	$A_{CP} [\times 10^{-3}]$
2	-	2	-	2	-
1.16	-	1.16	-	1.16	-
0.5	-	0.5	-	0.5	-
0.96	-	0.96	-	0.96	-
1.39	0.32	-	-	2.33	4.29
0.95	0.30	2.81	0.41	3.00	3.78
0.05	0.46	0.00	0.01	0.14	0.54
3.06	0.64	3.8	0.41	4.58	5.74
	Br[%] 2 1.16 0.5 0.96 1.39 0.95 0.05 3.06	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table: Systematic uncertainties.

Results (PRELIMINARY)

Branching fractions:

$$\begin{split} \mathcal{B}(D^0 \to \phi \gamma) &= (2.76 \pm 0.20 \pm 0.08) \times 10^{-5} \\ \mathcal{B}(D^0 \to \overline{K}^{*0} \gamma) &= (4.66 \pm 0.21 \pm 0.18) \times 10^{-4} \\ \mathcal{B}(D^0 \to \rho^0 \gamma) &= (1.77 \pm 0.30 \pm 0.08) \times 10^{-5} \end{split}$$

consistent with results by Belle, BaBar

3.3 σ away from BaBar result ((3.22 \pm 0.20 \pm 0.27) \times 10⁻⁴)

first observation $> 5\sigma$ significance

CP asymmetries:

 $\begin{aligned} A_{CP}(D^0 \to \phi \gamma) &= -(0.094 \pm 0.066 \pm 0.001) \\ A_{CP}(D^0 \to \overline{K}^{*0} \gamma) &= -(0.003 \pm 0.020 \pm 0.000) \\ A_{CP}(D^0 \to \rho^0 \gamma) &= 0.056 \pm 0.151 \pm 0.006 \end{aligned}$

First measurement of A_{CP} . Results consistent with no CP violation. Analysis $D^0 \rightarrow \gamma \gamma$

arXiv:1512.02992 (Accepted by PRD)

Motivation:

- Decay not observed yet
- Sensitive to New Physics:
 - $\circ~$ SM prediction: $\mathcal{B}\approx(1-3)\times10^{-8}$ (Phys. Rev. D 66, 014009 (2002))
 - $\,\circ\,$ MSSM model, gluino exchange: $\mathcal{B}\approx6\times10^{-6}$ (Phys. Lett. B 500, 304 (2001))

Previous best result:

from BaBar collaboration (Phys. Rev. D 85, 091107 (2012)):

 $\mathcal{B}(D^0 \to \gamma \gamma) < 2.2 \times 10^{-6}$ at 90% C.L.

Analysis method

- D^0 from decay $D^{*+} \rightarrow D^0 \pi_s^+$
- 2d fit in $m(D^0)$ and Δm
- normalise ${\cal B}$ w.r.t decay $D^0 \to K^0_S \pi^0$

Peaking background:

- From decays with π^0 and/or η decaying to $\gamma\gamma$
- $D^0 \to \pi^0 \pi^0$, $D^0 \to \eta \pi^0$, $D^0 \to \eta \eta$, $D^0 \to K^0_S(\to \pi^0 \pi^0) \pi^0$, $D^0 \to K^0_L \pi^0$
- Suppress with $\pi^0(\eta)$ veto and suppression of merged ECL clusters

Signal extraction

• Signal fit on data:

- Efficiency: 7.3%
- $\,\circ\,$ Signal yield: 4 \pm 15
- Same fit on normalisation mode:
 - Efficiency: 7.2%
 - $\circ~$ Signal yield: 343050 $\pm~673$

21

Systematics and result

Systematic uncertainties:

cut variation	±6.8%		
signal PDF shape	$^{+4.0}_{-2.4}$ events		
γ rec. eff.	\pm 4.4%		
K_S^0 reconstruction	$\pm 0.7\%$		
π^0 identification	$\pm 4.0\%$		
$\mathcal{B}(D^0 \to K^0_S \pi^0)$	±3.3%		

Table: Systematic uncertainties.

- Calculation of upper limit:
 - $\,\circ\,$ use frequentist method to estimate 90% C.L. upper limit

Final result:

 $\mathcal{B}(D^0
ightarrow \gamma \gamma) < 8.4 imes 10^{-7}$ at 90% C.L.

most stringent upper limit to date

Analysis $D^0 \rightarrow \pi^0 \pi^0$

Phys. Rev. Lett. 112, 211601 (2014)

Motivation:

- Singly Cabibbo-suppressed: enhanced possibility of New Physics contributions to A_{CP}
- Not measured at B-factories before

Only previous result:

by CLEO collaboration (Phys. Rev. D 63, 071101 (2001)):

$$A_{CP}(D^0 \to \pi^0 \pi^0) = (0.1 \pm 4.8)\%$$

Analysis method

- Flavour tag: D^0 from decay $D^{*+}
 ightarrow D^0 \pi_s^+$
- Fit Δm simultaneously for D⁰, D
 ⁰, in bins of (cos(θ*), p_T^{πs}, cos(θ^{πs})), extract A_{raw} for each bin

•
$$A_{\mathsf{raw}} = A_{CP} + A_{\mathsf{FB}} + A_{\varepsilon}^{\pi_s^+}$$

- Determine $A_{\varepsilon}^{\pi_s^+}$ from tagged and untagged $D^0 \to K^-\pi^+$, subtract and obtain $A_{raw}^{corr} = A_{CP} + A_{FB}$ in $\cos(\theta^*)$ bins
- $A_{\rm FB}$ is an odd function in $\cos(\theta^*)$, therefore

$$A_{CP} = \frac{1}{2}(A_{raw}^{corr}(\cos(\theta^*)) + A_{raw}^{corr}(-\cos(\theta^*)))$$

• Obtain average A_{CP} via a χ^2 fit on values in bins of $\cos(\theta^*)$

¹⁹/₂₁

Systematics and result

signal shape	0.03
π_S correction	0.07
A_{CP} extraction method	0.07
Total	0.10

Table: Systematic uncertainties.

Final result:

 $A_{CP} = [-0.03 \pm 0.64(stat.) \pm 0.10(syst.)]\%$

Result is consistent with no CPV.

Summary

 $D^0 \rightarrow V\gamma$ (PRELIMINARY RESULTS) Branching fractions $\mathcal{B}(D^0 \to \phi \gamma) = (2.76 \pm 0.20 \pm 0.08) \times 10^{-5}$ $\mathcal{B}(D^0 \to \overline{K}^{*0}\gamma) = (4.66 \pm 0.21 \pm 0.18) \times 10^{-4}$ $\mathcal{B}(D^0 \to \rho^0 \gamma) = (1.77 \pm 0.30 \pm 0.08) \times 10^{-5}$ first observation! CP asymmetries: $A_{CP}(D^0 \to \phi \gamma) = -(0.094 \pm 0.066 \pm 0.001)$ First A_{CP} measurement. $A_{CP}(D^0 \to \overline{K}^{*0}\gamma) = -(0.003 \pm 0.020 \pm 0.000)$ No A_{CP} observed. $A_{CP}(D^0 \to \rho^0 \gamma) = 0.056 \pm 0.151 \pm 0.006$

 $D^0 \rightarrow \gamma \gamma$ $\mathcal{B}(D^0 \rightarrow \gamma \gamma) < 8.4 \times 10^{-7}$ at 90% C.L. Most stringent limit to date.

 $D^0 o \pi^0 \pi^0 A_{CP} (D^0 o \pi^0 \pi^0) = (-0.03 \pm 0.64 \pm 0.1)\%$ No A_{CP} observed.

Search for CP violation in D⁰ decays