

Review of Top Quark Production at LHC and Tevatron

HQL 2016

Kentaro KAWADE

Nagoya University, Japan

On behalf of ATLAS, CDF, CMS, D0 and LHCb Collaborations

The Top Quark

- Heaviest particle in SM m_{top}~ 173 GeV
- Discovered in 1995 by CDF and D0 at Tevatron
- Strong coupling to Higgs boson
 Y_t~1
- Decay within 10⁻²⁵ s before hadronization as "bare-quark"

Play special role in electroweak symmetry breaking

Top quark production

• At Tevatron; 85% of $t\overline{t}$ pairs are produced via quark annihilation

- 70000 tt pairs produced at Tevatron
- At LHC; 90% of $t\overline{t}$ pairs are produced via gluon fusion
 - 6M tt pairs and 3M tt pairs produced in Run1 and Run2

Top Quark Signature

Top quark decays to W + b (~100%)

- The event signature is characterized by
 - High p_T lepton
 - Jets
 - b-jets
 - Large missing ET

Top quark pair cross-section $\sigma_{t\bar{t}}$

- Good test of pQCD theory
- Unique sensitivity to new physics

√s=1.96TeV

Total cross-section $\sigma_{t\bar{t}}$ at Tevatron

- Tevatron combination:
 - $\sigma_{t\bar{t}} = 7.60 \pm 0.41 \text{ pb}$

PRD 89, 072001 (2014)

Recent D0 measurement

D0 Note 6453-CONF (2015)

- Combine various channels
 - Q+jets & di-lepton
- BDT base analysis

 $\sigma_{t\bar{t}} = 7.73 \pm 0.13 \,(\text{stat.}) \pm 0.55 \,(\text{syst.}) \,\,\text{pb}$

$\sigma_{t\bar{t}}$ in dilepton eµ (1)

Event selections

- 2 opposite sign (OS) leptons, eµ
- 2 or more jets (W/O b-tag)
- $m_{eu} > 20 \text{ GeV} (DY\&HF \text{ veto})$
- Use cut & count method
- Systematic
 - trigger/selection 2.6%
 - tt modeling 2.7%
 - luminosity 2.7%
 - JES 2.2

•
$$\sigma_{t\bar{t}} = 793 \pm 8 \pm 38 \pm 21 \text{ pb}$$

(stat) (syst) (lumi)

 $\sigma_{t\bar{t}}^{\text{NNLO}+\text{NNLL}} = 832^{+20}_{-29} \text{ (scale)}^{+35}_{-35} \text{ (PDF}/\alpha_s \text{) pb}$

43 pb⁻¹; CMS (PRL 116, 052002 (2016)) 2.2 fb⁻¹; CMS-PAS-TOP-16-005 CMS 00 2.2 fb⁻¹ (13 TeV) Number of events CMS Preliminary e[±]µ[∓] Data Non W/Z VV + tīV tW Z/γ* → e[⊥]u[∓] Data/MC 1 9.0 2 3 Number of jets Number of $e^{\pm}u^{\mp}$ events Source Drell-Yan 24 + 9 + 4Non-W/Z leptons $109 \pm 50 \pm 33$ Single top quark $463 \pm 6 \pm 145$ VV $15 \pm 2 \pm 5$ tī V $31 \pm 1 \pm 10$ Total background $642 \pm 52 \pm 149$ tt dilepton signal $10199 \pm 14 \pm 462$ Data 10368

$\sigma_{t\bar{t}}$ in dilepton eµ (2)

- Event selection
 - 2 OS leptons, eµ
 - 1 or 2 b-tagged jets
- Background
 - Wt single top \Rightarrow same final state
 - Fake lepton estimated in MC with data-driven correction

ATLAS (ATLAS-CONF-2016-005)

ATLAS Preliminary

 $v_{s} = 13 \text{ TeV}$. 3.2 fb

Events

20000 F

18000

16000

14000

12000

10000

8000 6000 4000

2000

0.5

0

MC/Data

Data 2015

Wt Z+jets

2

🖂 tī Powheg+РҮ

Diboson Mis-ID lepton

Powheg+PY

aMC@NLO+HW Powheg+HW++

Powheq+PY radHi

Powheg+PY radLo

≥ 3

$\sigma_{t\bar{t}}$ in dilepton eµ (3)

- Extract $\sigma_{\rm t\bar{t}}$ and $\, \varepsilon_{\rm \, b}$ by likelihood fitting

 \mathcal{E}_{b} ; combined probability to select and tag a b-jet from the top decay

Probability to b-tag only one of two b-jets

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$$

$$N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{bkg}$$

Probability to b-tag both b-jets

Event counts	N_1	N_2
Data	11958	7069
Single top	1160 ± 120	224 ± 70
Dibosons	34 ± 12	1 ± 0
$Z(\rightarrow \tau \tau \rightarrow e \mu)$ +jets	37 ± 16	2 ± 1
Misidentified leptons	165 ± 65	116 ± 55
Total background	1390 ± 140	343 ± 89

 $\mathcal{E}_{e\mu}(e\mu \text{ selection eff.}), C_b(tagging correlation}), N^{bkg} from MC N_1, N_2 from measurement <math>\sigma_{tt}$ and \mathcal{E}_b are free

- Advantage; suppress some systematic (ex: b-tag efficiency)
- $\sigma_{tt} = 803 \pm 7 \text{ (stat)} \pm 27 \text{ (syst)} \pm 45 \text{ (lumi)} \pm 12 \text{(beam) pb}$

 $\sigma_{t\bar{t}}^{\rm NNLO+NNLL} = 832^{+20}_{-29} \, ({\rm scale})^{+35}_{-35} \, ({\rm PDF}/\alpha_s) \, {\rm pb}$

Summary of $\sigma_{t\bar{t}}$ @ LHC13TeV

Good agreement with theoretical prediction!

Precision beyond theoretical prediction
 ⇒ Differential cross-section

√s=7,8 TeV

Latest summary of $\sigma_{t\bar{t}}$ at $\sqrt{s} = 7$ and 8 TeV

Consistent to theoretical prediction!

HQL 2016, K.Kawade

√s=7,8 TeV

PRL 115, 112001 (2015)

First observation of top quark production in the forward region

- Top quark production in the forward region
 - Enhance of $t\overline{t}$ via $q\overline{q}$
 - gluon PDF at high momentum
 - tt production ~ 75% single top; ~ 25%
 Inclusive measurement
- Event selection
 - Muon; p_T > 25 GeV, 2.0 < η < 4.5
 - b-jet (anti-k_T, R=0.5)
 p_T = 50 ~ 100 GeV, 2.2 < η < 4.2
 - Isolation; $\Delta R(\mu, j) > 0.5$
 - $p_T(\mu + j) > 20 \text{ GeV}$

 $\sigma(top)[7 \text{ TeV}] = 239 \pm 53 (stat) \pm 33 (syst) \pm 24 (theory) \text{ fb},$

 $\sigma(top)[8 \text{ TeV}] = 289 \pm 43 (stat) \pm 40 (syst) \pm 29 (theory) \text{ fb.}$

in agreement with next-to-leading order standard model predictions!

13

ATLAS-CONF-2015-049

 $\sigma_{\rm ff}$; eµ final state

 σ_7 ; 66 GeV $< m_{qq} < 116$ GeV

$\sigma_{t\bar{t}} / \sigma_Z$ measurement

• Measure the ratio $\sigma_{t\bar{t}} / \sigma_{Z \to \ell \ell}$

$$R_{t\bar{t}/Z} = \frac{\sigma_{t\bar{t}}}{0.5\left(\sigma_{Z \to ee} + \sigma_{Z \to \mu\mu}\right)}$$

- Sensitive to gluon and sea quark PDF
- Advantage; cancelation of some syst.
 - Integrated luminosity
 - Lepton reconstruction efficiency

 $R_{t\bar{t}/Z} = 0.445 \pm 0.027 \text{ (stat)} \pm 0.028 \text{ (syst)}$

Small tension with ABM12LHC (smaller gg density) ATLAS Preliminary 13 TeV, 78 - 85 pb⁻¹ data ± total uncertainty data ± stat. uncertainty ABM12LHC CT10nnlo NNPDF3.0 MMHT14nnlo68CL (NNLO QCD, inner uncert.: PDF only) 0.3 0 25 0.35 0.4 0.45 0.5 $\sigma_{\pi}^{tot} / \sigma_{7}^{tot}$

Differential xsec $d\sigma_{t\bar{t}}/dX$

- Differential distribution as a function of top quark kinematics provide more precise SM test
 - ✓ top-pair p_T ⇒ sensitive to I/FSR
 - ✓ top-pair y \Rightarrow sensitive to PDF
 - ✓ top-pair mass \Rightarrow sensitive to new physics (large Q²)
 - ✓ $t\bar{t}$ + jets ⇒ test higher order QCD effect, matching to matrix-element generator and shower model
- Check various distributions thoroughly!

√s=1.96TeV

$d\sigma_{t\bar{t}}/dX$ in Tevatron

- As a function of m(tt)
 D0, PRD 90, 092006 (2014)
- As a function of $\cos \theta_{t}$ CDF, PRL 111,182002 (2013)
- No evidence for new physics
- Deviations in cos θ_t
 ⇒ possible source of the forwardbackward asymmetry

ATLAS-CONF-2015-065

$t\bar{t} + jets$ (1)

• Event selections

- Two OS leptons (ee, eμ, μμ)
- DY veto; $M_{\varrho\varrho} > 40 \text{ GeV}$
- Z veto; 81 GeV $< M_{gg} < 101$ GeV
- At least two b-jets
- Categorize by additional jet p_T (25GeV, 40GeV, 60GeV, 80GeV)
- Backgrounds
 - Z→ll + b-jets
 - Fake lepton
 - Wt and others
- Unfold to particle level "fiducial space"
 - Correct detector resolution
 - Advantage to large extrapolation to parton level

(ATLAS-CONF-2015-065)

$t\bar{t} + jets$ (2)

- Comparison with different radiation scale and model
- Powheg+Pythia6 predicts slightly less jets than observed, but trend is within the current uncertainties

$\frac{1}{\sigma} \frac{d \sigma}{d N_{ijet}}$ d Λ jet d N jet d N jet ATLAS Preliminary_ ATLAS Preliminary-ATLAS Preliminary-1 ATLAS Preliminary-13 TeV, 3.2 fb⁻¹ 13 TeV, 3.2 fb 13 TeV, 3.2 fb 13 TeV, 3.2 fb⁻ -lp -10 add. jet p₊ ≥ 25 GeV add. jet p₊ ≥ 40 GeV add. jet p_ ≥ 60 GeV -lp add. jet p₊ ≥ 80 GeV 10 10-10 10 ee-channel ee-channel ee-channel 10-2 ee-channe 10⁻² 10^{-2} Powheg+Pythia6 Powheg+Pythia6 Powheg+Pythia6 10^{-2} Powheq+Pvthia6 - Powheg+Herwig++ - - Powheg+Herwig++ - - Powheg+Herwig++ --- Powheg+Herwig++ aMCAtNLO+Herwig++ aMCAtNLO+Herwig++ aMCAtNLO+Herwig++ aMCAtNLO+Herwig++ --- Powheq+Pvthia8 --- Powheg+Pythia8 --- Powheg+Pythia8 --- Powheq+Pvthia8 - Data 10^{-3} 10^{-3} 10^{-3} 10^{-3} Stat. Stat.+Svst Stat. Stat +Syst Stat. Stat.+Syst Stat. Stat.+Syst MC/Data 1.2 8.0 8.0 MC/Data MC/Data 12 1.2 **MC/Data** 0.8 0.8 0.8 0.6 0.6 0.6 0.6 3 Number of additional jets Number of additional jets Number of additional jets Number of additional iets p_⊤ > 80GeV p_⊤ > 25GeV p_⊤ > 40GeV $p_{T} > 60 \text{GeV}$ HQL 2016, K.Kawade 17 different model

$d\sigma_{t\bar{t}}/dX$ in lepton + jets (1)

- Event selection
 - 1 lepton, $p_T > 30 \text{ GeV } \& | \eta | < 2.1$
 - 4 or more jets, $p_T > 25$ GeV & | η |< 2.4 at least 1 b-tagged
- Top quark reconstruction
 - Best jets permutation chosen from likelihood
 ← taking into account the M_{3j} and M_{2j}
 - Neutrino momentum by constrain m_t and m_W
- Backgrounds subtraction from MC
- Unfold to parton and particle level

CMS-PAS-TOP-16-008

$d\sigma_{t\bar{t}}/dX$ in lepton + jets (2)

- Generally, MC models describe data well
- Slight model difference in top pair p_T distribution

Powheg looks better?

→Still large error to conclude

Parton level

CMS-PAS-TOP-16-008

2.3 fb⁻¹ (13 TeV)

data

+

$d\sigma_{t\bar{t}}/dX$ in lepton + jets (3)

- Generally, MC models describe data well
- Slight model difference in top pair p_T distribution

Particle level

source	particle [%]	parton [%]
statistical uncertainty	1–5	1–5
b tagging	2–3	2–3
jet energy scale	5–7	6-8
jet energy resolution	< 1	< 1
lepton selection	3	3
E ^{miss} _T (non jet)	< 1	< 1
pileup	< 1	< 1
background	1–3	1–3
PDF	< 1	< 1
fact./ren. scale	< 1	< 1
NLO generator	1-6	1-10
parton shower scale	1–5	2–9
POWHEG + PYTHIA8 vs. Herwig++	< 3	1–12

$d\sigma_{t\bar{t}}/dX$ in dilepton (1)

- Differential cross-section as a function of kinematics of top quark and top-pair and jet multiplicity
- Broadly in agreement with the predictions
- Uncertainty is dominated by signal modeling
 - NLO generator, PS

HQL 2016, K.Kawade

CMS-PAS-TOP-16-011

CMS-PAS-TOP-16-011

$d\sigma_{t\bar{t}}/dX$ in dilepton (2)

- Observe discrepancies in large jet activity
 MC harder than data ⇒ need further tune
- Top p_{T} and rapidity better described at NLO+NNLL

√s=8 TeV

ATLAS arXiv:1511.04716 CMS arXiv:1505.04480

$d\sigma_{t\bar{t}}/dX$ results at 8 TeV

- Higher order theories show nicely agreement for the top p_T
- not so well described by Powheg+Pythia
 ⇒ same trend seen in new 13
 - TeV CMS results

Single top production

- Direct measurement of $|V_{tb}|$
- Sensitive to BSM (ex W')
- Large background in many searches of Higgs or SUSY

√s=1.96 TeV

Observation of s-ch single top production

- Combination of the CDF and D0 measurements
- $\sigma_s = 1.29^{+0.26}_{-0.24}$ [pb] \Rightarrow Significance of 6.3 σ
- Common event selection
 - High p_T lepton
 - MET
 - Jets with one or two b-jets

PRL 112, 231803 (2014)

√s=8 TeV

PLB, **756**, 228–246(2016)

Evidence for s-ch single top quark

- Event selections
 - Muon or Electron
 - exactly 2 b-jets
 - $E_T^{miss} > 50 \text{ GeV}$
 - m_T(W) > 30 GeV

 $m_{\rm T}(W) = \sqrt{2p_{\rm T}(\ell)E_{\rm T}^{\rm miss}\left(1 - \cos\Delta\phi\left(\ell, E_{\rm T}^{\rm miss}\right)\right)}$

- Using discriminant based on the matrix element method
- $\sigma_s = 4.8 \pm 0.8^{+1.6}_{-1.3} \text{ pb}$ (stat) (syst) significance $3.2 \sigma!$

√s=7, 8 TeV

arXiv:1603.02555

Muon, 5.1 fb⁻¹ (7 TeV), 2-jets 2-tags

Data

■tī ■Z+jets

W+jets
Diboson

Multijet

Syst. unc.

s channel t channel tW

Search for s-ch single top quark

- Event categorized by N-jets and M b-tag
- Simultaneous fit for BDT based MVA discriminant
 - Constrains W+jets and tt BKG

Events / 0.1

500

400

300

200

CMS

ATLAS-CONF-2015-079

t-ch single top ①

- Event selections
 - 1 muon
 - 2 jets with 1 b-jet
 - $E_{T}^{miss} > 30 \text{ GeV}$
 - m_T(W) > 50 GeV

- Checked backgrounds in each CR region
 - tt; 3 jets with 2 b-jets
 - W+jets; Only pass weaken b-tag requirement

W+jets control region

tt control region

ATLAS-CONF-2015-079

t-ch single top (2)	•	<u> </u>
	Variable	Corr. loss
 MVA with Neural Network 	$m(\ell v b)$	31.8 %
	m(jb)	29.0 %
	$m_{\mathrm{T}}(W)$	23.1 %
$\begin{array}{c} \bullet \\ \bullet $	$ \eta(j) $	15.8 %
$\sum_{i=1}^{n} \frac{-t\overline{t}, Wt, t\overline{b}}{-Wt \text{ iets}} = \sum_{i=1}^{n} \frac{-t\overline{t}, Wt, t\overline{b}}{-W$	$m(\ell b)$	8.5 %
	$\cos \Theta(\ell, j)_{\ell \nu b}$ r.f.	6.6 %
	$\Delta R(\ell \nu b, j)$	7.4 %
	$\eta(W)$	6.8 %
0 100 200 300 400 500 0 0.2 0.4 0.6 0.8 1 m(lvb) [GeV] NN output	$\Delta p_{\rm T}(\ell \nu b, j)$	5.5 %
	$\Delta R(\ell, j)$	2.1 %
$\sigma_{tq} = 130.3 \pm 5.8(stat) \pm 16.5(syst) \pm 7.7(lumi)$ [pb]		
$\sigma_{\bar{t}q} = 90.2 \pm 5.3(stat) \pm 18.4(syst) \pm 5.3(lumi)$ [pb] Direction	ct measurement o	f V _{th}
$\sigma_{tq,\rm NLO} = 136.0^{+5.4}_{-4.6} [\rm pb]$ (assume	ning Vtb>>Vts,Vtd, left	chiral coupling)
$\sigma_{\bar{t}q,\text{NLO}} = 81.0^{+4.1}_{-3.6} \text{ [pb]}$ HQL 2016, K.Kawade	$f_{LV}V_{tb} = 0.98 \pm 0$).08

30

Fraction of events / 20 GeV

31

CMS-PAS-TOP-16-003

-bjets

2j2b

≁

SR

3j2b

3j1b

njets

t-ch single top (3)

- Event categorized by N-jets and M b-tag
- Simultaneous fit of NN based MVA output
 - To constrains tt backgrounds

CR

CMS-PAS-TOP-16-004

Differential t-ch single top

- As a function of the $p_{T,t}$ and $|y_t|$
- No significant deviation form theoretical predictions within the experimental uncertainties

Analysis detail

- Event categorized by
 N-jets and M b-tag
- ✓ BDT based MVA discriminant
- Data/MC checked in signal enriched region
 - Unfold to parton level

Signal enriched region; slightly harder?

√s=8 TeV

JHEP 01, 064, 2016

Wt single top production

- Events containing two leptons and one central b-jet are selected
- Event categorized by N jets and M btag
 - to fit & to validate BKG
- Events are classified base on BDT

Result

 $23.0 \pm 1.3 \,(\text{stat.})^{+3.2}_{-3.5} \,(\text{syst.}) \pm 1.1 \,(\text{lumi.}) \,\text{pb}$,

Fiducial cross-section

 $0.85 \pm 0.01 \text{ (stat.)}_{-0.07}^{+0.06} \text{ (syst.)} \pm 0.03 \text{ (lumi.) pb}$.

Consistent to theoretical prediction!

Summary

- Many top quark production measurements in Tevatron and LHC
 - With different energy ($\sqrt{s} = 1.96, 7, 8, 13 \text{ TeV}$)
 - With different initial state (pp, pp)
- Latest top production results agree with SM predictions
 - Top quark pair production cross-section
 - \checkmark Good agreement in various energies and regions
 - ✓ Very precise measurement
 - Differential top quark pair production cross-section
 - MC models reproduce shape well
 - Potential further tuning
 - Single top production cross-section
 - Good agreement with theoretical predictions

Thanks !

HQL 2016, K.Kawade

Top quark pair cross-section $\sigma_{t\bar{t}}$

$$\sigma_{p\bar{p}\to t\bar{t}} = \sum_{i,j=g,q,\bar{q}} \int_0^1 f_i(x_1) \, \mathrm{d}x_1 \int_0^1 f_j(x_2) \, \mathrm{d}x_2 \, \times \hat{\sigma}_{ij\to t\bar{t}} \, (\alpha_s),$$

top cross-sections

	CMS energy	R_{qq}	R _{gg}	$\sigma_{tar{t}}^{ m NNLO+NNLL}$ [pb]	scale unc.	PDF unc.
LHC	7	15	85	172	3%	3%
	8	12	88	245.8	3%	2.5%
	14	10	90	953.6	3%	2%
Tevatron	1.96	90	10	7.165	2%	2%

Ь

72 pb

 $\sigma_t @ LHC13TeV 217 pb$

Matrix Element Method

- The ME method directly uses theoretical calculations to compute a per-event signal probability
- The method was introduced to Top quark measurement in Tevatron (~90's)

$$P(x|\text{process}_{i}) = \frac{1}{\sigma_{i}} \frac{d\sigma_{i}}{dx} \quad \text{This probabilities are estimated for each process}$$

$$p_{\text{hase space}} \quad \text{differential cross-section of h.s. parton level cut}$$

$$\frac{d\sigma}{dx} = \sum_{j} \int dy \left[f_{1,j}(q_{1}, Q^{2}) f_{2,j}(q_{2}, Q^{2}) \underbrace{\frac{d\sigma_{hs,j}}{dy}}_{\text{PDF}} \underbrace{W_{j}(x, y) \Theta_{\text{parton}}(y)}_{\text{Transfer function}} \right]$$

$$r_{max} = \frac{(2\pi)^{4}}{4\sqrt{(q_{1} \cdot q_{2})^{2} - m_{1}^{2}m_{2}^{2}}} |\mathcal{M}|^{2} d\Phi$$