

Search for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ at the NA62 experiment at CERN

<u>Marco Mirra</u> - Università degli studi di Napoli Federico II and INFN Napoli on behalf of the NA62 collaboration

XIIIth International Conference on Heavy Quarks and Leptons

May 24 2016, Blacksburg, Virginia

Outline

$\succ K^+ \rightarrow \pi^+ \nu \overline{\nu} \text{ decay}$

> NA62 experimental strategy and apparatus

➤ 2015 data quality

Kaons at CERN SPS

NA48 (1997 – 2001) ϵ'/ϵ and direct CP violation discovery

NA48/1 (2002) K_s rare decay studies

NA48/2 (2003 – 2004) K[±] precision measurements

NA62 (2007) Lepton universality: $K_{e2}/K_{\mu 2}$ (using the NA48 apparatus)

NA62 (2015 –) Main goal: BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) Rare decay studies: LFV, LNV decays, search for heavy ν , axions, .

24/05/2016 M. Mirra

Search for $K^+ ightarrow \pi^+ \nu \overline{ u}$ at the NA62 experiment at CERN

FCNC loop processes: s→d coupling and highest CKM suppression

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right] (1 + \Delta_{EM})$$
$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}$$

24/05/2016 M. Mirra

FCNC loop processes: s→d coupling and highest CKM suppression

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right] (1 + \Delta_{EM})$$

$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}$$

Hadronic matrix element obtained from $BR(K_{13})$ via isospin rotation

FCNC loop processes: s→d coupling and highest CKM suppression

Loop functions favor top contribution

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right] (1 + \Delta_{EM})$$

$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \leftarrow CP$$

Hadronic matrix element obtained from $BR(K_{l3})$ via isospin rotation

FCNC loop processes: s→d coupling and highest CKM suppression

Loop functions favor top contribution

24/05/2016 M. Mirra

FCNC loop processes: $s \rightarrow d$ coupling and highest CKM suppression

Loop functions favor top contribution **EM** radiative correction $BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right] (1 + \Delta_{EM})$ $BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \leftarrow CP$ Hadronic matrix element obtained QCD from $BR(K_{13})$ via isospin rotation corrections for charm diagrams

24/05/2016 M. Mirra Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN

FCNC loop processes: s→d coupling and highest CKM suppression

24/05/2016 M. Mirra

Possibility to distinguish among different models

- Models with a CKM-like structure of flavour interactions (e.g. MFV)
- Models with new flavour and CPviolating interactions in which either left or right handed currents fully dominate (e.g. Z or Z' FCNC scenarios)
- More specifics NP models like Randall-Sundrum

[A. J. Buras, D. Buttazzo, and R. Knegjens, arXiv:1507.08672, Nov 2015]

24/05/2016 M. Mirra

Search for $K^+
ightarrow \pi^+ \nu \overline{
u}$ at the NA62 experiment at CERN

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay: experimental status

In 2008, combine E787 (1995-8 runs) & E949 (12-weeks run in 2001) results

Expected bkg 2.6 events, prob. all 7 obs. evts are bkg is $\sim 10^{-3}$

24/05/2016 M. Mirra

Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN

NA62 experiment at CERN

NA62 is located in the North Area at CERN, It uses the SPS accelerator complex:

Circumference : 6.9 km \checkmark

24/05/2016

M. Mirra

- **Injector of protons for LHC at 450GeV/c** \checkmark
- ✓ Protons for fixed target physics at 400 GeV/c

~200 participants from 29 institutions

NA62 beam

Primary SPS proton beam:

- *p* = 400 GeV protons
- Proton on target 1.1×10^{12} /s

High-intensity, unseparated secondary beam

- Momentum selection chosen to optimize *K* decays
- $p = 75 \text{ GeV/c} (1.4 \times \text{more } K^+ \text{ than NA48/2})$
- $\Delta p/p \sim 1\%$ (3× smaller than NA48/2)

Total rate
750 MHz> 525 MHz π
> 170 MHz p
> 45 MHz K

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay: signal and background

NA62 Main Goal:			
10% precision BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement	Decay backgrounds		
	Mode		BR
Technique:	$\mu^+ \nu(\gamma)$	$K_{\mu 2}$	63.5%
K decay in flight	$\pi^+\pi^0(\gamma)$	$K_{2\pi}$	20.7%
Signal: BR _{SM} ~ $(9.11 \pm 0.72) \times 10^{-11}$	$\pi^+\pi^+\pi^-$	$K_{3\pi}$	5.6%
	$\pi^0 e^+ v$	K_{e3}	5.1%
<i>K</i> ⁺ track in <i>K</i> ⁺	$\pi^0 \mu^+ u$	$K_{\mu 3}$	3.3%
π^+ track out	$\pi^+\pi^-e^+ u$	$K_{e4}(+-)$	4.1×10^{-5}
No other particles in final state	$\pi^0\pi^0 e^+ v$	$K_{e4}(00)$	2.2×10^{-5}
Requirements:	$\pi^+\pi^-\mu^+ u$	$K_{\mu 4}$	1.4×10^{-5}
 ~100 SM events 	$e^+v(\gamma)$	K_{e2}	1.5×10^{-5}
• $10^{13} K^+$ decays (signal acceptance ~10%)	Other backgrounds		
 background rejection ~10¹² background known to ~10% 	Upstream interactions		

NA62 experimental strategy

Most discriminating variable: $m_{miss}^2 = (P_K - P_\pi)^2$

Experimental principles:

- ✓ Precise kinematic reconstruction: 2 signal regions in m_{miss}^2
- ✓ Low π momentum (15< p_{π} <35 GeV/c) to allow enough «missing» energy to be detected by hermetic γ veto detectors (mainly for $K_{2\pi}$ and semileptonic modes with π^{0})
- ✓ PID: K upstream, $e/\mu/\pi$ downstream
- \checkmark Beam inelastic event suppression
- ✓ Sub-ns timing

Expected 45 SM signal events / year with < 10 background

24/05/2016 M. Mirra

NA62 setup

16

Experimental status

- NA62 took data in 2014 and 2015
- Beam commissioned up to nominal intensity
- Tracker:

Beam tracker (Gigatracker) partially commissioned Straw spectrometer commissioned

Cherenkov detectors:

Beam Kaon ID (KTAG) commissioned RICH commissioned

- All the other detectors commissioned
- Trigger:

L0 commissioned; L1(2) partially commissioned.

• Data samples for data quality study (mainly from 2015):

Low intensity data taken with a minimum bias trigger (this talk) Samples at half and full intensity taken with a calorimeter trigger

2015 data quality: signal topology and K⁺ ID

One track selection (OTS):

- Single downstream track topology
- Beam track matching the downstream track
- Downstream track matching energy in calorimeters

24/05/2016 M. Mirra

Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN

2015 data quality: kinematics

Technique: Si -pixel tracker and Straw tube tracker in vacuum **Goal:** O(10⁴÷10⁵) kinematic suppression factor required for main backgrounds

Resolution on m_{miss}^2 close to the design

O(10³) kinematic suppression factor in 2015

24/05/2016 M. Mirra

Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN

2015 data quality: downstream particle ID

Technique: RICH and calorimeters

Goal: O(10⁷) μ/π separation to suppress mainly $K^+ \rightarrow \mu^+ \nu_{\mu}$

80% π^+ efficiency in RICH with O(10²) μ/π separation

Simple cut analysis on calorimeters provides $(10^4 \div 10^6) \mu$ suppression, with $(90\% \div 40\%) \pi^+$ efficiency. Room for improvements.

24/05/2016 M. Mirra

2015 data quality: photon rejection

Technique: EM calorimeters with different angles range

Goal: O(10⁸) rejection π^0 from $K^+ \rightarrow \pi^+ \pi^0$

Measured on data using $K^+ \rightarrow \pi^+ \pi^0$ selected kinematically

 $O(10^6) \pi^0$ rejection already obtained

2015 rejection measurement statistically limited

24/05/2016 M. Mirra

Search for $K^+
ightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN

Summary from 2015 data quality studies

Time resolution:

Close to the design

Kinematics:

Resolution close to the design.

Prospects to reach the designed signal –background separation.

Pion –muon ID:

Separation with RICH close to expectations.

Study of the separation with calorimeters on going. Results from simple cut analysis promising.

Photon veto:

 $O(10^6) \pi^0$ rejection already obtained. More statistics needed to push the study at the design sensitivity.

NA62 physics programme

Standard Kaon Physics Precision:

- 10% precision BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) measurement
- χ PT studies: $K^+ \to \pi^+ \gamma \gamma$, $K^+ \to \pi^+ \pi^0 e^+ e^-$, $K^+ \to \pi^{0(+)} \pi^{0(-)} l^+ \nu$
- Precision measurement of $R_K = \Gamma(K^+ \to e^+ \nu_e)/(K^+ \to \mu^+ \nu_\mu)$

> LFV with kaons:

• $K^+ \to \pi^+ \mu^\pm e^\mp, K^+ \to \pi^- \mu^+ e^+, K^+ \to \pi^- l^+ l^+$

Heavy neutrino searches

- $K^+ \rightarrow l^+ \nu_h$
- ν_h from K, D decays and $\nu_h \rightarrow \pi l$

> Pion decay:

• $\pi^0 \rightarrow 3/4\gamma, \pi^0 \rightarrow invisible$

> Dark sector:

- long living dark photon, produced by $\pi^0/\eta/\eta/\Phi/\varrho/\omega$, decaying in l^+l^-
- long living axion, produced in a beam-dump configuration, decaying in $\gamma\gamma$

Conclusion

- ► Commissioning of the NA62 experiment for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ is almost completed. Tested up to the nominal intensity.
- Preliminary study of the quality of the data taken at low intensity:
 - **Physics sensitivity** for $K^+ \to \pi^+ \nu \bar{\nu}$ measurement in line with the design.
 - A further compelling physics program is going to be addressed.
 - Analysis of data at higher intensity on going.

24/05/2016

M. Mirra

NA62 started to collect new data at the end of April (~200 days of data taking for 2016). The data taking will continue in 2017 and 2018

Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN

Backup Slide

	Decay	Physics	Present limit (90% C.L.) / Result	NA62	
	$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}	
	$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}	
	$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	$0.7 imes 10^{-12}$	
	$\pi^-e^+e^+$	LNV	6.4×10^{-10}	2×10^{-12}	
	$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	$0.4 imes 10^{-12}$	
	$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}	
	$e^- \nu \mu^+ \mu^+$	LNV	No data	10^{-12}	
	$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10^{-12}	
	$\pi^+\chi\chi$	New Particle	_	10^{-12}	
	$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10^{-11}	
	$\pi^+\pi^+\mu^- u$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10^{-11}	
	$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10^{-12}	
	$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$		
	R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better	
	$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events	
	$\pi^0\pi^0e^+\nu$	χPT	66000 events	$O(10^{6})$	
	$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)	
24/05/2	2016 M. Mirra Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN				

Trigger for LFN modes in NA62

24/05/2016 M. Mirra

• FCNC loop processes: s→d coupling and highest CKM suppression

- Very clean theoretically:
 - > SD contribution dominate $A_q \sim \frac{M_q^2}{M_W^2} V_{qs}^* V_{qd}$
 - → Hadronic matrix element related to the precisely measured BR $(K^+ \rightarrow \pi^0 e^+ \nu_e)$
- BR proportional to $|V_{ts} * V_{td}|^2$
- SM prediction [A.J. Buras et al, 2015, arXiv:1503.02693]

BR(
$$K^+ \rightarrow \pi^+ v \bar{v}$$
) = (9.11 ± 0.72)×10⁻¹¹

NA62 setup: Gigatracker and Straw tracker

NA62 setup: Gigatracker and Straw tracker

Giga-tracker

3 stations of Si pixels matching the beam dimensions placed in vacuum (5400 pixels, 10 read out chips)

Straw-tracker

4 chambers, 2.1 m in diameter 16 layers (4 views) of straws per chamber

 $\sigma \le 130 \ \mu m \ (1 \ view) \quad \sigma_p/p < 1\%$ 0.45 X_0 per chamber $\sigma_{\theta(K\pi)} < 60 \ \mu rad$

Detector fully commissioned in 2014 run

24/05/2016 M. Mirra

Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN

NA62 setup: KTAG and CHANTI

NA62 setup: KTAG and CHANTI

KTAG

Identifies 45 MHz of K^+ in 750 MHz of unseparated beam Running with N₂ at 1.74 bar

> Detector commissioned with $\checkmark \sigma_t < 70 \text{ps}$ $\checkmark \text{ K-ID efficiency > 95\%}$ $\checkmark \text{ K mis-ID < 10^{-3}}$

CHANTI

Detection of particles from inelastic interactions in GTK mimicking a pion in time with a kaon

6 stations hermetic to charged particles between 49 mrad and 1.31 rad Each station is made of 24 scintillation bars in each view (X & Y), readout with WLS fibers and SiPMs

Detector commissioned with

- $\checkmark \sigma_t \sim 900 \mathrm{ps}$
- ✓ Single layer efficiency > 0.99

NA62 setup: downstream particle identification

NA62 setup: downstream particle identification

MUV system: π/μ identification & trigger

MUV1-2: Fe/scintillator hadron calorimeter
Used offline to provide principal veto for K→µv
MUV3: Fast µ identification for trigger

• Vetoes *µ* online at 10 MHz

Detector commissioned; MUV3 $\sigma_t \sim 420$ ps

RICH provides additional 10⁻² μ rejection to exclude $K \rightarrow \mu v$

 μ/π separation ~ 1% for 15<p< 35GeV Provides L0 trigger for charged particles Ne gas at 1 atm 2000 8-mm PMTs on upstream flanges

RICH fully commissioned with $\sigma_t \sim 70$ ps

24/05/2016 M. Mirra

Search for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN

NA62 photon veto detectors

NA62 photon veto detectors

Large angles vetoes (LAV) $8.5 < \theta < 50$ mrad

12 stations at intervals of ~10m along decay volume Each station has 4-5 rings/station of lead glass blocks $1-\varepsilon$ for e^- at 200 MeV: ~ 10^{-4}

LAV fully commissioned with $\sigma_t \sim 1$ ns

Liquid krypton calorimeter (LKr) $1 < \theta < 8.5$ mrad

Quasi-homogeneous ionization calorimeter Readout towers $2 \times 2 \text{ cm}^2$ - 13248 channels Depth 127 cm = 27 X₀ $1-\epsilon$ for γ with E > 10 GeV: < 10^{-5}

LKr from NA48 setup. Commissioned with:

- $\sigma_t \sim 500 \mathrm{ps}$
- Space resolution 1mm
- 1-ε < 10⁻⁵ for 10 GeV γ

SAC & IRC: very small angle veto Shashlik calorimeters

SAC: γ detection along the beamline (after beam deflection) IRC: detection of photons at very low angle in front of the LKr WLSs+PMTs used for both detectors

Both commissioned in 2015 with $\sigma_t \sim 1$ ns

Search for $K^+ ightarrow \pi^+ \nu \overline{\nu}$ at the NA62 experiment at CERN