

Recent results from NA48/2 (LFV, DP) and NA62 (Neutral Pion Form Factor)

On behalf of the NA62 collaboration

Nicolas Lurkin

School of Physics and Astronomy, University of Birmingham

XIIIth International Conference on Heavy Quarks and Leptons, 24-05-2016

Outline

- □ NA48/2 NA62_{R_K} experiment
- **Lepton Number Violating (LNV) decay** $K^{\pm}
 ightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$
- **□** Search for resonances in $K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}$ and $K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}$
- **Dark Photon (DP) searches in** π^0 decay
- \Box π^0 electromagnetic transition form factor (TFF) measurement

CERN NA48/NA62 experiments

Experiments history		
Earlier	NA31	
1997 ↓ 2001	NA48 (<i>K_S/K_L</i>)	$Re(\varepsilon'/\varepsilon)$ Discovery of direct CPV
2002	NA48/1 (<i>K_S</i> /hyperons)	Rare K_S and hyperon decays
2003 2004	NA48/2 (<i>K</i> +/ <i>K</i> ⁻)	Direct CPV, Rare K^+/K^- decays
2007 ↓ 2008	NA62 _{RK} (K ⁺ /K ⁻)	$R_K = K_{e2}^{\pm}/K_{\mu 2}^{\pm}$
2014	NA62 (K ⁺)	$K^+ ightarrow \pi^+ u ar{ u}$, Rare K^+ and π^0 decays

Kaon decay in flight experiment NA62: currently ~200 participants, 29 institutions from 13 countries

Experimental Setup (NA48/2 – NA62_{R_K})

Principal subdetectors

- Scintillator hodoscope (HOD)
 - Low-level trigger, time measurement (150 ps)

 Magnetic spectrometer (4DHCs)
 ↓ 4 views/DCH high efficiency
 ↓ σ_p/p = 1.02% ⊕ 0.044% · p [GeV/c] = 0.48% ⊕ 0.009% · p [GeV/c]
 ↓ Liquid Krypton EM calorimeter (LKr)
 ↓ High granularity, quasi-homogeneous

 $\sigma_E / E = (3.2/\sqrt{E} \oplus 9/E \oplus 0.42)\% \text{ [E in GeV]}$ $\sigma_x = \sigma_y = (4.2/\sqrt{E} \oplus 0.6) \text{ mm} \text{ [E in GeV]}$ (1.5 mm @ 10 GeV)

NA48/2 $P_K = 60 \pm 3 \text{ GeV/c}$ 3-track vertex triggerSimultaneous K^+/K^- beamNA62_{RK} $P_K = 74 \pm 2 \text{ GeV/c}$ K_{e2} triggerAlternate K^+/K^- beam

LNV in the $K^{\pm} \rightarrow \pi \mu \mu$ decays

Majorana Neutrinos

- Asaka-Shaposhnikov model (vMSM) [PLB 620 (2005) 17]: three sterile neutrinos N_i in the SM to explain Dark Matter (N₁, O(keV)) + Baryon Asymmetry and low v mass (N_{2,3} O(100 MeV − few GeV))
- Effective vertices with W^{\pm} , Z and SM leptons with U mixing matrix

→ Production of N_{2,3} in K^{\pm} decays and N_{2,3} decay for $m_{2,3} < m_K - m_\mu$

$$K^{\pm} \rightarrow \mu^{\pm} N$$
, $N \rightarrow \pi^{\pm} \mu^{\mp}$

$$\geq BR(K^{\pm} \rightarrow \mu^{\pm}N) \times BR(N \rightarrow \pi^{\mp}\mu^{\pm}) \sim |U_{\mu4}|^4$$

Inflatons

- Shaposhnikov-Tkachev model [PLB 639 (2006) 414]:
 νMSM + real scalar field (inflaton χ) with scale-invariant couplings to explain universe homogeneity and isotropy on large scales/structures on smaller scales
- \succ χ-Higgs mixing (θ), χ-Higgs coupling → universe reheating, $\tau_{\chi} \sim (10^{-8} 10^{-12})$
- Production in Kaon decays:

$$m_{\chi} < 354 \text{ MeV}/c^2 \text{ and } BR(K^{\pm} \rightarrow \pi^{\pm}\chi) = 1.3 \times 10^{-3} \left(\frac{2|\vec{p}_{\chi}|}{M_K}\right) \theta^2$$

For this result

LNV: Same-Sign Muon Sample

Blind analysis:

- Selection based on simulation of $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ and $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ (background, similar topology)
 - 3-track vertex topology, 2 same-sign muons, 1 odd-sign pion, no missing momentum
 - First-order cancellation of systematic effects
- ► Control region: $M_{\pi\mu\mu} < 480 \text{ MeV}/c^2$
- > Signal region: $|M_{\pi\mu\mu} M_K| < 5 \text{ MeV}/c^2$

Results:

- Event in Signal Region: $N_{obs} = 1$
- Expected background from MC:

 $N_{\rm exp} = 1.163 \pm 0.867_{stat} \pm 0.021_{ext} \pm 0.116_{syst}$

From Rolke-Lopez statistical method:

 $BR(K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11} @ 90\% \text{ CL}$

LNC: Opposite-Sign Muon Sample

MeV/c²) 500

180

120 100

80

Gelection

- Similar to same-sign
 - 3-track vertex, 2 opposite-sign muons,
 - 1 pion, no missing momentum
 - First-order cancellation of systematic effects
 - > Signal region: $|M_{\pi\mu\mu} M_K| < 8 \text{ MeV}/c^2$

Results

- Event in Signal Region: 3489 $K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ candidates
- ▶ Background: $(0.36 \pm 0.10)\%$
- See [Phys. Lett. B697 (2011) 107] for previous measurement of BR and FF
- Search for resonances in $M_{\pi\mu}$ and $M_{\mu\mu}$ invariant masses
 - → step= $0.5\sigma(M_{res})$ and window= $\pm 2\sigma(M_{res})$
 - Limit using Rolke-Lopez from N_{obs} and N_{exp} for each hypothesis

LNV and LNC: Resonances searches

□ Search for $K^{\pm} o \mu^{\pm} N_4 (N_4 o \pi^{\mp} \mu^{\pm})$ decays, 284 mass hypotheses

- ▶ 2 possibilities for $M(\pi^{\mp}\mu^{\pm})$, closest to M_{res} chosen
- Never exceeds $+3\sigma$: no signal observed and UL(BR) $\sim 10^{-10}$ for $\tau < 100$ ps

LNV and LNC: Resonances searches

] Search for $K^\pm o \mu^\pm N_4 ig(N_4 o \pi^\mp \mu^\pm ig)$ decays, 284 mass hypotheses

- ▶ 2 possibilities for $M(\pi^{\mp}\mu^{\pm})$, closest to M_{res} chosen
 - Never exceeds $+3\sigma$: no signal observed and UL(BR) $\sim 10^{-10}$ for $\tau < 100$ ps

Search for $K^\pm o \mu^\pm N_4 (N_4 o \pi^\pm \mu^\mp)$ decays, 280 mass hypotheses

Never exceeds $+3\sigma$: no signal observed and UL(BR) $\sim 10^{-9}$ for $\tau < 100$ ps

LNV and LNC: Resonance searches

J Search for $K^\pm o \mu^\pm N_4 (N_4 o \pi^\mp \mu^\pm)$ decays, 284 mass hypotheses

- ▶ 2 possibilities for $M(\pi^{\mp}\mu^{\pm})$, closest to M_{res} chosen
- Never exceeds $+3\sigma$: no signal observed and UL(BR) $\sim 10^{-10}$ for $\tau < 100$ ps

Search for
$$K^\pm o \mu^\pm N_4 ig(N_4 o \pi^\pm \mu^\mp ig)$$
 decays, 280 mass hypotheses

▶ Never exceeds $+3\sigma$: no signal observed and UL(BR) $\sim 10^{-9}$ for $\tau < 100$ ps

Search for $K^{\pm}
ightarrow \pi^{\pm} X(X
ightarrow \mu^{+} \mu^{-})$ decays, 267 mass hypotheses

Never exceeds $+3\sigma$: no signal observed and UL(BR) $\sim 10^{-9}$ for $\tau < 100$ ps

Dark Photon Searches

- Simplest hidden sector model: Extra U(1) symmetry with gauge boson A' [B.Holdom, Phys. Lett. B166 (1986) 196]
- **QED-like interactions with SM fermions**
 - $\succ \mathcal{L} \sim g' q_f \overline{\psi}_f \gamma^\mu \psi_f U'_\mu$

Coupling constants and charges generated through kinetic mixing between QED and the new U(1) gauge bosons

$$\succ \mathcal{L}_{mix} = -\frac{\epsilon}{2} F^{QED}_{\mu\nu} F^{\mu\nu}_{dark} \qquad \gamma \qquad \qquad A'$$

Motivations:

- Possible solution to the muon g-2 anomaly

DP: $\pi^0 \rightarrow \gamma A'$ **Decay**

- Mixing parameter ε and dark photon mass $m_{A'}$
- \succ Loss of sensitivity as $m_{A'}$ approaches the m_{π^0} threshold
- ➢ For ε² > 10^{−7} and $m_{A'}$ > 10 MeV/c² mean free path is negligible and prompt decay is assumed

 e^{-}

Signature similar to
$$\pi_D^0$$

 $\pi_D^0 \to \gamma e^+ e^-; \ \pi^0 \to \gamma A'$
 $\downarrow e^+$

Nicolas Lurkin, HQL2016,24-05-2016

DP: NA48/2 Data Sample

- □ NA48/2 data: $\sim 2 \times 10^{11} K^{\pm}$ decays in the fiducial region
- - Three-track vertex topology
 - $\succ \quad \left| m_{\pi\gamma eee} m_K \right| < 20 \; \mathrm{MeV}/c^2$
 - $\succ \quad \left| m_{\gamma ee} m_{\pi^0} \right| < 8 \; {\rm MeV}/c^2$
 - No missing momentum
- **Q** Selection for $K^{\pm}
 ightarrow \pi_D^0 \mu^{\pm}
 u$
 - $\succ \quad \left| m_{\gamma ee} m_{\pi^0} \right| < 8 \; {\rm MeV}/c^2$
 - No missing mass

- **C** Sensitivity determined by irreducible π^0 Dalitz decay (1.2%)
- **Acceptance for both signature depending on** $m_{A'}$ up to 4.5%

DP: Signal Search

C Scan for narrow peaks in e^+e^- invariant mass spectrum

- $\succ \sigma_{m_{ee}} = 0.011 \times m_{ee}$
- ▶ Range: 9 MeV/ $c^2 \le m_{A'} < 120 \text{ MeV}/c^2$
- ► Variable DP mass step: $\approx 0.5\sigma(m_{A'})$
- \blacktriangleright mass-window: $\pm 1.5\sigma(m_{A'})$
- > Limits from N_{obs} and N_{exp} for each of the 404 $m_{A'}$ hypotheses

DP: Final NA48/2 Result

Phys.Lett. B746 (2015) 178]

- ➢ Improvement on the existing limits in the $m_{A'}$ range 9 − 70 MeV/ c^2
- > Most stringent limits are at low $m_{A'}$ (kinematic suppression is weak)
- Sensitivity limited by the irreducible π_D^0 background, ULs are 2-3 orders of magnitude above SES.
- ➢ Upper limit on ε² scales as ~ (1/NK)^{1/2}: modest improvement with larger samples
- > If DP couples to quarks and decays mainly to SM fermions, it is ruled out as the explanation for the anomalous $(g-2)_{\mu}$

π^0 TFF: Dalitz Decay

 $\pi^0
ightarrow e^+ e^- \gamma$

 π^0

Radiative

corrections

Kinematic variables

$$x = \frac{(p_{e^+} + p_{e^-})^2}{m_{\pi^0}^2}, \quad y = \frac{2p_{\pi^0} \cdot (p_{e^+} - p_{e^-})}{m_{\pi^0}^2 (1 - x)}$$

Differential decay width

$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})}\frac{d^{2}\Gamma(\pi_{D}^{0})}{dxdy} = \frac{\alpha}{4\pi}\frac{(1-x)^{3}}{x}\left(1+y^{2}+\frac{r^{2}}{x}\right)\left(1+\delta(x,y)\right)|F(x)|^{2}$$

Form factor varies slowly:

Approximation $F(x) \approx 1 + ax$

C Slope measured from Dalitz decays from $K^{\pm} \rightarrow \pi^{\pm} \pi_D^0$

- Expectation from VMD: $a \approx 0.03$
- Enters hadronic light-by-blight scattering contribution to $(g 2)_{\mu}$ A. Nyffeler [arXiv:1602.03398]
- Model independent measurement: important test of the theory models
 Nicolas Lurkin, HQL2016,24-05-2016

Electromagnetic Transition Form factor

F(x)

 e^+

π^0 TFF: Radiative Corrections

Corrections from NLO differential width encoded in $\delta(x, y)$

- Mikaelian and Smith [Phys.Rev. D5 (1972) 1763]
- Husek, Kampf and Novotny [Phys.Rev. D92 (2015) 5, 054027]
- Corrections of same magnitude as TFF

New generator with radiative correction and simulation of bremsstrahlung photon.

π^0 TFF: Measurement principle

C Select pure π_D^0 sample from

- 3-track vertex topology
- One photon candidate and max three well reconstructed tracks
- Identification by reconstructed kinematics $\begin{array}{l} 115 \ \mathrm{MeV}/c^2 < M_{ee\gamma} < 145 \ \mathrm{MeV}/c^2 \\ 465 \ \mathrm{MeV}/c^2 < M_{\pi^+\pi^0} < 510 \ \mathrm{MeV}/c^2 \\ \mathrm{Dalitz} \ \mathrm{variable} \ \mathrm{y} < 1; \quad 0.01 < x < 1 \end{array}$
- Reconstructed Kaon compatible with beam properties and offline L2 and L3 trigger conditions
- Build x Dalitz distribution for data and MC (equal population bins)
- **For each TFF slope value hypothesis, reweight** simulated events ($a_{sim} = 0.032$)

 $w(a) = \frac{(1 + ax_{true})^2}{(1 + a_{sim}x_{true})^2}$

Minimise $\chi^2(a)$ of Data/Simulation wrt. a

π^0 TFF: Preliminary Result

Data sample

- \succ Kaon decays: $\sim 2 \times 10^{10}$
- Fully reconstructed π_D^0 events in the signal region (x > 0.01): 1.05×10^6

Uncertainties			
Source	$\delta a(imes 10^{-2})$		
Statistical – Data	0.49		
Statistical – MC	0.20		
Beam momentum spectrum simulation	0.30		
Spectrometer momentum scale	0.15		
Spectrometer resolution	0.05		
LKr non-linearity and energy scale	0.04		
Particle mis-ID	0.08		
Accidental background	0.08		
Neglected π_D^0 sources in MC	0.01		

π^0 TFF: World Data

Theory expectations

- ➢ K. Kampf et al., EPJ C46 (2006), 191.
 Chiral perturbation theory: $a = (2.90 \pm 0.50) \times 10^{-2}$
- M. Hoferichter et al., EPJ C74 (2014), 3180.
 Dispersion theory:

 $a = (3.07 \pm 0.06) \times 10^{-2}$

> T. Husek et al., EPJ C75 (2015) 12, 586. Two-hadron saturation (THS) model: $a = (2.92 \pm 0.04) \times 10^{-2}$

CELLO measurement:

➢ H. J. Behrend et al., Z. Phys. C49 (1991), 401.
Extrapolation of space-like momentum region data fit to VMD model: $a = (3.26 \pm 0.26_{stat}) \times 10^{-2}$

Summary

LNV decay @ NA48/2

► $BR(K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 8.6 \times 10^{-11} @ 90\% \text{ CL}$

Majorana Neutrinos and Inflaton @ NA48/2

- $\succ \quad K^{\pm} \to \mu^{\pm} N_4 (N_4 \to \pi^{\mp} \mu^{\pm}): \text{UL(BR) of the order of } 10^{-10} \text{ for } \tau < 100 \text{ ps}$
- $\succ \quad K^{\pm} \to \mu^{\pm} N_4 (N_4 \to \pi^{\pm} \mu^{\mp}): \text{UL(BR) of the order of } 10^{-9} \text{ for } \tau < 100 \text{ ps}$
- $\succ \quad K^{\pm} \to \pi^{\pm} \chi(\chi \to \mu^{+} \mu^{-}) \quad : \text{UL(BR) of the order of } 10^{-9} \text{ for } \tau < 100 \text{ ps}$

Dark Photon searches @ NA48/2

- Phys.Lett. B746 (2015) 178
- > Improved limits on DP mixing ε^2 in the mass range $9 70 \text{ MeV}/c^2$
- \blacktriangleright The whole region favoured by $(g-2)_{\mu}$ is excluded

$\Box \pi_D^0$ electromagnetic TFF slope @ NA62_{R_K}

- - Preliminary model independent result
 - $\succ \sim 1$ million fully reconstructed π_D^0 decays
- First 6σ observation of non zero slope in time-like region
- Improves TFF precision in the time-like momentum region