Kaons on the Lattice

The XIII International Conference on Heavy Quarks and Leptons

May 24, 2016

Norman H. Christ

Columbia University RBC and UKQCD Collaborations

Kaons on the lattice

- Lattice QCD 2016
 - Kaons from Euclidean space
 - Multi-particle final states
 - 2nd order long distance effects
- $K \rightarrow \pi \pi$ decay: $\Delta I = \frac{1}{2}, \epsilon'$
- $K_L K_S$ mass difference
- Long distance contribution to ε_{K}
- Long distance contribution to rare kaon decay: $K^+ \rightarrow \pi^+ v \ \overline{v}$

Lattice QCD – 2016

- Physical quark masses (ChPT not needed)
- Chiral quarks (doubling problem solved)
- Large physical volumes: (6 fm)³
- Small lattice spacing: 1/a = 2.4 GeV
 - $-(\Lambda_{QCD} a)^2$ effects < 1% \bigcirc
 - $-(m_{\rm charm} a)^2$ effects ~ 20% 🙄

RBC Collaboration

- BNL
 - Chulwoo Jung
 - Taku Izubuchi
 - Christoph Lehner
 - Meifeng Lin
 - Amarjit Soni
- RBRC
 - Mattia Bruno
 - Chris Kelly
 - Tomomi Ishikawa
 - Hiroshi Ohki
 - Shigemi Ohta (KEK)
 - Sergey Syritsyn

- Columbia
 - Ziyuan Bai
 - Xu Feng
 - Norman Christ
 - Luchang Jin
 - Robert Mawhinney
 - Greg McGlynn
 - David Murphy
 - Jiqun Tu
 - Connecticut – Tom Blum

UKQCD Collaboration

- Southampton
 - Jonathan Flynn
 - Vera Guelpers
 - Tadeusz Janowski
 - Andreas Juttner
 - Andrew Lawson
 - Edwin Lizarazo
 - Marina Marinkovic (CERN)
 - Chris Sachrajda
 - Francesco Sanfilippo
 - Matthew Spraggs
 - Tobi Tsang

- Edinburgh
 - Peter Boyle
 - Julien Frison (KEK)
 - Nicolas Garron (Plymouth)
 - Ava Khamseh
 - Antonin Portelli
 - Oliver Witzel

Kaons from Euclidean Space

HQL16 5/24/2016 (6)

Kaons from Euclidean space

- Begin with standard Hilbert space QM at t = 0
 - Use *e*-*iHt* for physical time development.
- Lattice QCD requires the use of e^{-Ht} without the `*i*'
 - Low lying eigenvalues and eigenstates of H are easily accessible
 - More massive unstable states are increasingly difficult

Kaons from Euclidean space

- Matrix elements between stable states are easy: [JHEP 1506 (2015) 164] $\langle \pi(p_{\pi})|V_{\mu}(\vec{0})|K(p_{K})\rangle = f_{+}^{K\pi}(q^{2})(p_{K}-p_{\pi})_{\mu}+f_{-}^{K\pi}(q^{2})(p_{K}+p_{\pi})_{\mu}$ $f_{+}^{K\pi}(0) = 0.9685(34)(14) \qquad |V_{us}| = 0.2233(5)(9)$
- Final two-pion state more difficult:
 - $-e^{-Ht}$ projects onto the ground state
 - can obtain excited states by using finite volume quantization.

- Lellouch-Luscher finite volume correction.
- Final three-pion state is hard [Hansen and Sharpe]

Kaons from Euclidean space

- Long-distance parts of second-order processes: ΔM_K , ε_K , and $K^+ \rightarrow \pi^+ v v$ are possible
- Exploit connection between time-dependent and time-independent perturbation theory:

$$E_n^{(2)} = \sum_{n'} \frac{|V_{n'n}|^2}{E_n - E_{n'}} \qquad 1 - iE_n^{(2)}(T_a - T_b) = \langle n|T\left\{e^{-i\int_{T_b}^{T_a} V_I(t)dt}\right\}|n\rangle$$
$$= \langle n|\left(1 - \frac{1}{2}\int_{T_b}^{T_a}\int_{T_b}^{T_a} dt_1 dt_2 T\left\{V_I(t_2)V_I(t_1)\right\}\right)|n\rangle$$

• Can be used in Euclidean space if unphysical $e^{+(E_n-E_{n'})(T_a-T_b)}$ are removed

$K \rightarrow \pi \pi$ Decay

HQL16 5/24/2016 (10)

$K \rightarrow \pi \pi$ and CP violation

• Final $\pi\pi$ states can have I = 0 or 2.

$$\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2} \qquad \Delta I = 3/2 \langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_0} \qquad \Delta I = 1/2$$

- CP symmetry requires A_0 and A_2 be real.
- Direct CP violation in this decay is characterized by:

$$\epsilon' = \frac{i e^{\delta_2 - \delta_0}}{\sqrt{2}} \left| \frac{A_2}{A_0} \right| \left(\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right) \qquad \begin{array}{c} \text{Direct CP} \\ \text{violation} \end{array}$$

Local four quark operators

Current-current operators

 $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$ $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$

• QCD Penguins

$$Q_{3} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V-A}$$

$$Q_{4} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$

$$Q_{5} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V+A}$$

$$Q_{6} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

q = u, d, s

Electro-Weak
Penguins

$$Q_7 \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} e_q(\bar{q}_{\beta}q_{\beta})_{V+A}$$

 $Q_8 \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_q(\bar{q}_{\beta}q_{\alpha})_{V+A}$
 $Q_9 \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_q(\bar{q}_{\beta}q_{\alpha})_{V-A}$
 $Q_{10} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_q(\bar{q}_{\beta}q_{\alpha})_{V-A}$

HQL16 5/24/2016 (12)

Physical $\pi \pi$ states Lellouch-Luscher

- Euclidean $e^{-H_{QCD}t}$ projects onto $|\pi\pi(\vec{p}=0)\rangle$
- Exploit finite-volume quantization.

- Boundary conditions give ground state has physical \vec{p}
 - $\Delta I = 3/2$: impose anti-periodic BC on *d* quark
 - $\Delta I = 1/2$: impose G-parity BC
- Correctly include π π interactions, including normalization

Calculation of A₂

HQL16 5/24/2016 (14)

$\Delta I = 3/2 - Continuum Results$ (M. Lightman, E. Goode T. Janowski)

- Use two new large ensembles to remove a² error (m_p=135 MeV, L=5.4 fm)
 - 48³ x 96, 1/a=1.73 GeV
 - 64³ x 128, 1/a=2.28 GeV
- Continuum results:
 - $\operatorname{Re}(A_2) = 1.50(0.04_{\text{stat}}) (0.14)_{\text{syst}} \times 10^{-8} \text{ GeV}$
 - $Im(A_2) = -6.99(0.20)_{stat} (0.84)_{syst} \times 10^{-13} \text{ GeV}$
- Experiment: $Re(A_2) = 1.479(4) \ 10^{-8} \text{ GeV}$
- $E_{\pi\pi} \rightarrow \delta_2 = -11.6(2.5)(1.2)^{\circ}$
- Phys.Rev. **D91**, 074502 (2015)

⊿ *I* = 1/2 Rule

Compare A_2 and $A_0/22.5$

Cancellation in A_2

- 50 year puzzle resolved!
- A dynamical QCD effect no more explanation needed?

⊿ *I* = 1/2 Rule

Compare A_2 and $A_0/22.5$

Cancellation in A_2

- 50 year puzzle resolved!
- A dynamical QCD effect no more explanation needed?

Calculation of A_0 and ε'

HQL16 5/24/2016 (18)

Overview of calculation (Chris Kelly, Daiqian Zhang)

- Use 32³ x 64 ensemble
 - 1/a = 1.3784(68) GeV, L = 4.53 fm.
 - 216 configurations separated by 4 time units
 - 900 low modes for all-to-all propagators
 - Solve for $\pi\pi$ and kaon sources on each of 64 time slices

Overview of calculation

- Achieve essentially physical kinematics:
 - $M_{\pi} = 143.1(2.0)$
 - M_K = 490.6(2.2) MeV
 - $E_{\pi\pi} = 498(11) \text{ MeV}$
 - $-m_{res} = 0.001842(7)$
- Error in ensemble generation (*u* and *d* quark forces computed from the same random numbers after shift by 12 in y-direction)

Average plaquette Correct ensemble 0.512239(3)(7) Incorrect ensemble 0.512239(6)

$I = 0, \ \pi\pi - \pi\pi$ correlator

- Determine normalization of $\pi\pi$ interpolating operator
- Determine energy of finite volume, I = 0, $\pi\pi$ state: $E_{\pi\pi} = 498(11)$ MeV
- Determine $I = 0 \ \pi \pi$ phase shift: $\delta_0 = 23.8(4.9)(2.2)^{\circ}$
- Phenomenological result: $\delta_0 = 38.0(1.3)^\circ$ [G. Colangelo]

$\Delta I = \frac{1}{2} K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_W and $\pi\pi$ operator.
- Show data for all $K H_W$ separations $t_Q t_K \ge 6$ and $t_{\pi\pi} t_K = 10, 12, 14, 16$ and 18.
- Fit correlators with $t_{\pi\pi}$ $t_Q \ge 4$
- Obtain consistent results for $t_{\pi\pi}$ $t_Q \ge 3$ or 5

Results

- Determine the complex $\Delta I = 1/2$ amplitude A_0
 - $\text{Re}(A_0) = (4.66 \pm 1.00_{\text{stat}} \pm 1.26_{\text{sys}}) \times 10^{-7} \text{ GeV}$
 - Expt: (3.3201 ± 0.0018) x 10⁻⁷ GeV

- $Im(A_0) = (-1.90 \pm 1.23_{stat} \pm 1.08_{sys}) \times 10^{-11} \text{ GeV}$

- Calculate $\operatorname{Re}(\varepsilon'/\varepsilon)$:
- $\operatorname{Re}(\varepsilon'/\varepsilon) = (1.38 \pm 5.15_{\text{stat}} \pm 4.59_{\text{sys}}) \times 10^{-4}$
 - Expt.: $(16.6 \pm 2.3) \times 10^{-4}$
 - 2.1 σ difference

K_L – K_S mass difference

HQL16 5/24/2016 (24)

$$K_L - K_S$$
 mass difference

- Perturbative result integrates out charm and shows poor convergence (Brod and Gorbahn)
 - NNLO is 36% of LO
 - Large $\mu_{\rm c}$ dependence
- Lattice must include charm quark (GIM)

(25)

∆M_K Present Results (Ziyuan Bai)

- $m_c = 750 \text{ MeV}, M_{\pi} = 170 \text{ MeV}$
- Disconnected contribution small
- $\pi\pi$ contribution ~2% and FV correction ~0.5%
- New 64³x128, 1/*a*=2.38 GeV, m_c =1.2 GeV, M_{π} = 140 MeV 26 configs: ΔM_{κ} = 0.6(3.3) x 10⁻¹² MeV (26 \rightarrow 400?)

	⊿M_Kx 10 ⁺¹² MeV
Types 1-4	5.76(73)
Types 1-2	4.19(15)
η	0
π	0.27(14)
<i>ππ</i> , <i>I</i> =0	-0.097(49)
ππ, Ι=2	-6.56(6) x 10 ⁻⁴
$\Delta_{\sf FV}$	0.029(19)
Expt.	3.483(6)

Long distance part of \mathcal{E}_K

HQL16 5/24/2016 (27)

Diagrams for $\lambda_t \lambda_u$ contribution to ε_K (Ziyuan Bai)

 Identify five types of diagrams

HQL16 5/24/2016 (28)

New $\Delta S = 2$ counter term (Ziyuan Bai)

- Subtract $E_{ij}(\mu) (\bar{s}\gamma^{\nu}(1-\gamma^5)d) (\bar{s}\gamma^{\nu}(1-\gamma^5)d)$ to make off-shell Greens function vanish at $p_i^2 = \mu_{RI}^2$
- Define infrared-safe Rome-Southampon normalization for bi-local operator.

Progress toward long-distance part of $\mathcal{E}_{\mathcal{K}}$ (Ziyuan Bai)

- Examine only type 1 and 2 diagrams
- Only current-current operators
- Compute NLO (one-loop) conversion
 from bilocal RI to MS
- Dependence on $\mu_{\rm RI}$
- Preliminary
- $|\varepsilon_{\mathcal{K}}| = 2.228(11) \times 10^{-3} \text{ expt.}$

μ_{RI}	δ ε _κ
1.54	0.1384 x 10 ⁻³
1.92	0.1483 x 10 ⁻³
2.11	0.1473 x 10 ⁻³
2.31	0.1405 x 10 ⁻³
2.56	0.1246 x 10 ⁻³

Rare Kaon Decays $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

HQL16 5/24/2016 (31)

Rare Kaon Decays (Xu Feng, Andrew Lawson, Antonin Portelli)

- $K_L \rightarrow \pi^0 + l^+ + \overline{l^-}$: determine the sign of the indirect CP violating amplitude.
- K⁺ → π⁺ + ν + ν̄ : calculate the long distance (I ≥ 1/m_c) part of charm contribution. Estimated to be small (≈4%) but should be verified

• Estimate 3 contributions: top : charm-sd : charm-ld [Cirigliano et.al. Rev. Mod. Phys.]

$$\lambda_t \frac{m_t^2}{M_W^2} : \lambda_c \frac{m_c^2}{M_W^2} \ln \frac{M_W}{m_c} : \lambda_u \frac{\Lambda_{\rm QCD}^2}{M_W^2} = 68\% : 29\% : 3\%$$

- However
 - Charm contributes 50% of $K^+ \rightarrow \pi^+ + \nu \ \overline{\nu}$ BR
 - 50% charm contribution comes form $p \sim m_c$

$K^{+} \rightarrow \pi^{+} \nu \overline{\nu} - \text{results}$ (Xu Feng)

- Present phenomenological treatment [Buras, et al. hep-ph/1503.02693]
 - Integrate out charm & represent by local $(\overline{sd})_{L}(\overline{vv})_{L}$ operator
 - Add correction for up quark
 - Add $(\Lambda_{QCD}/m_c)^2$ correction for dim-8 in OPE
 - $\delta P_{cu} = 0.04(2)$ [Isidori et.al, hep-ph/0503107]
- Lattice result
 - δP_{cu} = -0.007(2) (large systematic errors)
 - Includes all physics at energies below μ_{RI} = 2 GeV

Outlook

 Lattice QCD now reaches sufficient far into Minkowski space to allow 1st-principles calculation of:

– K \rightarrow π π , \varDelta I = 3/2 and 1/2, $~\varepsilon^{\,\prime}/\varepsilon$

 $-M_{\kappa_L} - M_{\kappa_S}$, long dist. contribution to ε

- Long distance parts of $K \rightarrow \pi I \overline{I}$, $K \rightarrow \pi v \overline{v}$
- First realistic calculation of ΔM_{κ} underway
- Must wait for next generation of computers to accurately include charm