Dalitz Plot Analyses and Charmonium Production at BaBar

Tomo Miyashita Caltech On Behalf of the BaBar Collaboration

HQL 2016

Virginia Tech May 24th, 2016

Overview

• "Measurement of the $I = 1/2 \ K\pi \ S$ -wave amplitude from Dalitz plot analyses of $\eta_c \to K\overline{K}\pi$ in two-photon interactions"

Phys. Rev. D 93, 012005 (2016)

We study the processes $\gamma \gamma \rightarrow K_S^0 K^{\pm} \pi^{\mp}$ and $\gamma \gamma \rightarrow K^+ K^- \pi^0$ using a data sample of 519 fb⁻¹ recorded with the *BABAR* detector operating at the SLAC PEP-II asymmetric-energy e^+e^- collider at center-of-mass energies at and near the $\Upsilon(nS)$ (n = 2, 3, 4) resonances. We observe η_c decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the $I = 1/2 K\pi S$ -wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behavior for the phase up to a mass of $1.5 \text{ GeV}/c^2$. In contrast, the amplitudes show very marked differences. The data require the presence of a new $a_0(1950)$ resonance with parameters $m = 1931 \pm 14 \pm 22 \text{ MeV}/c^2$ and $\Gamma = 271 \pm 22 \pm 29 \text{ MeV}$.

The BaBar Experiment

Previous BaBar Dalitz Analyses

Phys. Rev. D 89, 112004 (2014)

- Previously, the BaBar experiment performed a Dalitz plot analysis of $\eta_c \to K^+ K^- \pi^0$ and $\eta_c \to K^+ K^- \eta$ using an isobar model
 - Reported first observation of $K_0^*(1430) \to K\eta$
 - Intermediate scalar mesons dominate: $\eta_c \rightarrow \text{pseudoscalar} + \text{scalar}$

Charmonium Production at BaBar

Two-Photon Charmonium Production

• Two-photon charmonium production:

- The e^+/e^- beam particles are scattered at small angles and undetected in the final state
- Interaction produces resonances with $J^{PC} = 0^{\pm +}, 2^{\pm +}, 4^{\pm +}..., 3^{++}, 5^{++}, ...$

Event Selection I

• We consider the two-photon processes:

 $\gamma\gamma \to K^0_S K^+ \pi^-, \ K^0_S \to \pi^+ \pi^-$

- Require exactly 4 well-measured charged particle tracks with transverse momenta > 0.1 GeV/c(relative to beam axis)
- Loose PID requirement on tracks
- No more than 5 photon candidates with energy above 100 MeV
- Perform vertex fit to pair of oppositely charged tracks to select K_S^0 candidate
- Combine K⁰_S candidate with two oppositely charged tracks, fit to common vertex, and require it to be within the interaction region

 $\gamma\gamma\to K^+K^-\pi^0$

- Require exactly 2 well-measured charged particle tracks with transverse momenta > 0.1 GeV/c(relative to beam axis)
- Loose PID requirement on tracks
- Reconstruct π^0 from photon pairs where $E_{\gamma} > 50 \text{ MeV}$
- Kinematically fit photon pairs to π^0 hypothesis and require candidate to emanate from primary vertex

Event Selection II

• Additional cut to remove ISR background dominated by $J^{PC} = 1^{--}$ resonance production:

$$M_{\rm rec}^2 \equiv (p_{e^+e^-} - p_{\rm rec})^2 > 10 \ {\rm GeV}^2/c^4$$

• Final selection on transverse momentum (p_T) :

Efficiency

- Compute efficiency using fully simulated signal MC in which the η_c decays uniformly in phase space
- Express efficiency as function of $m(K^+\pi^-)$ $(m(K^+K^-))$ and $\cos\theta$, where θ is the angle, in the $K^+\pi^-(K^+K^-)$ rest frame between the direction of the K^+ and the boost from the $K^0_S K^+\pi^-(K^+K^-\pi^0)$ rest frame
- Smooth the efficiency map by parameterizing with Legendre polynomials in intervals of m: $\epsilon(\cos\theta) = \sum_{L}^{12} a_L(m) Y_L^0(\cos\theta)$

Mass Spectra

- Fit η_c signal peaks using Breit-Wigner convolved with mass resolution function
 - Model background with 2nd order polynomial

10

• Dalitz Plot Distributions In η_c Signal Region:

Motivation

- Scalar mesons $(J^P = 0^+)$ remain a puzzle in light meson spectroscopy
 - Too many states to readily accommodate within the quark model
 - Large decay widths: overlap between S-wave and other amplitudes
- Structure of the $I = 1/2 K\pi S$ -wave is a long-standing problem
 - Source of large systematic uncertainties in analyses involving decays of heavy flavored hadrons
- Previous measurements of $I = 1/2 \ K\pi \ S$ -wave:
 - LASS Experiment: Nucl. Phys. B 296, 493 (1988)
 - E791 Experiment: **Phys. Rev. D 73, 032004 (2006)**

Dalitz Plot Analysis Methods I

- Analyze Dalitz plots using unbinned maximum likelihood fits in the η_c mass region and two fit approaches: <u>Phys. Lett. B 592, 1 (2004)</u>
 - Isobar Model: Resonances described by Breit-Wigner functions
 - Model-Independent Partial Wave Analysis (MIPWA):

Phys. Rev. D 73, 032004 (2006)

• Express amplitude as sum of partial waves:

$$A = A_1 + c_2/c_1 A_2 e^{i(\phi_2 - \phi_1)} + c_3 A_3 e^{i(\phi_3 - \phi_1)} + \dots$$

where A_1 is the $K\pi$ S-wave amplitude

- For the $K\pi$ S-wave contribution, divide the $K\pi$ mass spectrum into 30 mass intervals with 60 MeV width and, for each bin, add to the fit two new free parameters corresponding to the amplitude and phase of the $K\pi$ S-wave within the bin
- Since the η_c is decaying through the strong interaction, we can apply isospin conservation, which means that the $K\pi S$ -wave must have I = 1/2

Dalitz Plot Analysis Methods II

- Analyze Dalitz plots using unbinned maximum likelihood fits in the η_c mass region and two fit approaches: <u>Phys. Lett. B 592, 1 (2004)</u>
 - Isobar Model: Resonances described by Breit-Wigner functions
 - Model-Independent Partial Wave Analysis (MIPWA):

Phys. Rev. D 73, 032004 (2006)

• The interference between the two $K\pi$ modes is positive for η_c decays. Therefore, the $K\pi$ amplitude is symmetrized with respect to the two modes and we have:

$$A_{S-wave} = \frac{1}{\sqrt{2}} (a_j^{K^+\pi^-} e^{i\phi_j^{K^+\pi^-}} + a_j^{K_S^0\pi^-} e^{i\phi_j^{K_S^0\pi^-}}) \text{ for } \eta_c \to K_s^0 K^+\pi^-$$
$$A_{S-wave} = \frac{1}{\sqrt{2}} (a_j^{K^+\pi^0} e^{i\phi_j^{K^+\pi^0}} + a_j^{K^-\pi^0} e^{i\phi_j^{K^-\pi^0}}) \text{ for } \eta_c \to K^+ K^-\pi^0$$
$$\text{where } a^{K^+\pi^0}(m) = a^{K^-\pi^0}(m) \text{ and } \phi^{K^+\pi^0}(m) = \phi^{K^-\pi^0}(m)$$

- The $K_2^*(1420)$, $a_0(980)$, $a_0(1400)$, $a_2(1310)$, ... are represented by Breit-Wigner functions multiplied by corresponding angular functions
- Background is fit separately using the sidebands and interpolated into the η_c signal region

MIPWA Fit

• The fits to both Dalitz plots improve when a new $a_0(1950)$ resonance is added to the fit:

• $a_0(1950)$ parameters from fits:

 $\eta_c \to K_S^0 K^+ \pi^-$: $m(a_0(1950)) = 1949 \pm 32 \text{ MeV}/c^2$, $\Gamma(a_0(1950)) = 265 \pm 36 \text{ MeV}$ $\eta_c \to K^+ K^- \pi^0$: $m(a_0(1950)) = 1927 \pm 15 \text{ MeV}/c^2$, $\Gamma(a_0(1950)) = 274 \pm 28 \text{ MeV}$ Weighted Mean: $m(a_0(1950)) = 1931 \pm 14 \text{ MeV}, /c^2 \Gamma(a_0(1950)) = 271 \pm 22 \text{ MeV}$

MIPWA Fit Projections

m²(K⁺K⁻) (GeV²/c⁴)

m²(K⁻π⁰) (GeV²/c⁴)

m²(K⁺π⁰) (GeV²/c⁴)

MIPWA Fit Fractions

• MIPWA fit results:

	$\eta_c \rightarrow K^0_S K^{\pm} \pi^{\mp}$		$\eta_c \rightarrow K^+ K^- \pi^0$	
Amplitude	Fraction (%)	Phase	Fraction (%)	Phase
$(K\pi \ S\text{-wave})$	\overline{K} 107.3 ± 2.6 ± 17.9	0.	$125.5 \pm 2.4 \pm 4.2$	0.
$a_0(980)\pi$	$0.83 \pm 0.46 \pm 0.80$	$1.08 \pm 0.18 \pm 0.18$	$0.00\pm0.03\pm1.7$	
$a_0(1450)\pi$	$0.7 \pm 0.2 \pm 1.4$	$2.63 \pm 0.13 \pm 0.17$	$1.2\pm0.4\pm0.7$	$2.90 \pm 0.12 \pm 0.25$
$a_0(1950)\pi$	$(3.1 \pm 0.4 \pm 1.2)$	$-1.04\pm0.08\pm0.77$	$4.4 \pm 0.8 \pm 0.7$	$-1.45 \pm 0.08 \pm 0.27$
$a_2(1320)\pi$	$0.15 \pm 0.06 \pm 0.08$	$1.85 \pm 0.20 \pm 0.23$	$0.61 \pm 0.23 \pm 0.3$	$1.75 \pm 0.23 \pm 0.42$
$K_2^*(1430)^0\overline{K}$	$(4.7 \pm 0.9 \pm 1.4)$	$4.92 \pm 0.05 \pm 0.1$	$(3.0 \pm 0.8 \pm 4.4)$	$5.07 \pm 0.09 \pm 0.3$
Total	\rightarrow 116.8 \pm 2.8		\rightarrow 134.8 ± 2.7	
$-2\log \mathcal{L}$	-4314.2		-2339	
χ_2/N_{cells}	301/254 = 1.17		283.2/233 = 1.22	

- Good agreement between the two η_c decay modes
- $(K\pi \ S\text{-wave})\overline{K}$ amplitude dominates with small contributions from the $K_2^*(1430)^0\overline{K}$ and the new $a_0(1950)\pi$
- Total fractions well over 100% indicate significant interference effects

• Good description of the data

Isobar Fit Fractions

- Isobar fit results:
 - $K\pi \ S$ -wave is modeled as superposition of interfering $K_0^*(1430)$, $K_0^*(1950)$, and non-resonant contributions

$\eta_c \rightarrow K_s^0$	$K^{\pm}\pi^{\mp}$	$\eta_c { ightarrow} K^+$	$K^{-}\pi^{0}$	
Fraction (%)	Phase	Fraction (%)	Phase	
40.8 ± 2.2	0.	28.1 ± 3.3	0.	
14.8 ± 1.7	-1.00 ± 0.07	6.0 ± 1.2	-0.89 ± 0.09	$K\pi \mathcal{S}$ -wav
18.0 ± 2.5	1.94 ± 0.09	29.5 ± 4.4	-4.5 ± 0.08	
10.5 ± 1.2	0.94 ± 0.12	4.8 ± 1.3	0.08 ± 0.23	
1.7 ± 0.5	2.94 ± 0.13	1.2 ± 0.5	3.05 ± 0.29	
0.7 ± 0.2	-1.76 ± 0.24	1.0 ± 0.4	-0.54 ± 0.24	
0.2 ± 0.2	-0.53 ± 0.42	3.7 ± 1.0	-0.45 ± 0.41	
2.3 ± 0.7	-1.55 ± 0.11	7.4 ± 1.5	-1.71 ± 0.12	
88.8 ± 4.3		81.8 ± 6.1		
-4290.7		-2200.8		
467/256 = 1.82		383/233 = 1.63		
	$\eta_c ightarrow K_S^0$ Fraction (%) 40.8 ± 2.2 14.8 ± 1.7 18.0 ± 2.5 10.5 ± 1.2 1.7 ± 0.5 0.7 ± 0.2 0.2 ± 0.2 2.3 ± 0.7 88.8 ± 4.3 -4290.7 467/256=1.82	$\begin{array}{rl} \eta_c {\rightarrow} K_S^0 K^{\pm} \pi^{\mp} \\ \hline \text{Fraction (\%)} & \text{Phase} \\ 40.8 \pm 2.2 & 0. \\ 14.8 \pm 1.7 & -1.00 \pm 0.07 \\ 18.0 \pm 2.5 & 1.94 \pm 0.09 \\ 10.5 \pm 1.2 & 0.94 \pm 0.12 \\ 1.7 \pm 0.5 & 2.94 \pm 0.13 \\ 0.7 \pm 0.2 & -1.76 \pm 0.24 \\ 0.2 \pm 0.2 & -0.53 \pm 0.42 \\ 2.3 \pm 0.7 & -1.55 \pm 0.11 \\ 88.8 \pm 4.3 \\ -4290.7 \\ 467/256{=}1.82 \end{array}$	$\eta_c \rightarrow K_S^0 K^{\pm} \pi^{\mp}$ $\eta_c \rightarrow K^{-}$ Fraction (%)PhaseFraction (%) 40.8 ± 2.2 0. 28.1 ± 3.3 14.8 ± 1.7 -1.00 ± 0.07 6.0 ± 1.2 18.0 ± 2.5 1.94 ± 0.09 29.5 ± 4.4 10.5 ± 1.2 0.94 ± 0.12 4.8 ± 1.3 1.7 ± 0.5 2.94 ± 0.13 1.2 ± 0.5 0.7 ± 0.2 -1.76 ± 0.24 1.0 ± 0.4 0.2 ± 0.2 -0.53 ± 0.42 3.7 ± 1.0 2.3 ± 0.7 -1.55 ± 0.11 7.4 ± 1.5 88.8 ± 4.3 81.8 ± 6.1 -4290.7 -2200.8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

• Poor agreement between the two η_c decay modes

MIPWA $K\pi S$ -wave Amplitude And Phase

- Clear peak at $K_0^*(1430)$ resonance
- Broad dip around 1.7 GeV/ c^2 is likely related to $K_0^*(1950)$

- Phase varies by about π in $K_0^*(1430)$ resonance region
- Phase dip around 1.7 GeV/c^2 is likely related to interference with $K_0^*(1950)$ resonance

Legendre Moments I

Legendre Moments III

Legendre moment distributions are generated by weighting each event by the relevant $Y_L^0(\cos\theta)$ function 20 weight sum/(30 MeV/c²) 50 Dalitz Fit 10 40 0 30 -10 Data 20 -10 10 -20 0 -20 1.5 2 2.5 1.5 2.5 1.5 2.5 2 2 3 3 3 $m(K^+K^-)$ (GeV/c²) $m(K^+K^-)$ (GeV/c²) $m(K^+K^-)$ (GeV/c²) 20 20 weight sum/(30 MeV/c²) 20 10 10 10 0 0 -10 -10 -10 -20 -20 2.5 1.5 2 2.5 1.5 2 1.5 2 2.5 3 3 3 $m(K^+K^-)$ (GeV/c²) $m(K^+K^-)$ (GeV/c²) $m(K^+K^-)$ (GeV/c²) $\eta_c \to K^+ K^- \pi^0$ $m(K^+K^-)$

23

Comparison With LASS and E791

- I=1/2 $K\pi S$ -wave amplitude and phase comparisons with LASS and E791
- LASS phase shifted by -0.6 rad
- LASS suffers from 4-fold ambiguity above $1.82 \text{ GeV}/c^2$
- Difficult to separate I=1/2 and I=3/2 contributions in E791 experiment
- E791 measurements only go up to $1.72 \text{ GeV}/c^2$
- Similar phase behavior up to about $1.5 \text{ GeV}/c^2$
- Disagreement in mass-dependence of amplitudes

BaBar MIPWA (present analysis): $\eta_c \to K_S^0 K^+ \pi^-$

Summary

- We have performed Dalitz plot analyses of the decays $\eta_c \to K_S^0 K^+ \pi^$ and $\eta_c \to K^+ K^- \pi^0$ using an isobar model and a MIPWA method
 - We find the MIPWA approach provides a better description of the data than the isobar model
 - The data require the presence of a new $a_0(1950)$ with parameters: $m = 1931 \pm 14 \pm 22 \text{ MeV}/c^2$ $\Gamma = 271 \pm 22 \pm 29 \text{ MeV}$
 - and significances of 2.5σ and 4.2σ for the $K_S^0 K^+ \pi^-$ and $K^+ K^- \pi^0$ modes, respectively
- We extract the $K\pi$ I = 1/2 S-wave amplitude and phase and find good agreement between the two η_c decay modes
 - The $K\pi$ S-wave is dominated by the $K_0^*(1430)$ resonance
- Comparing our present measurement with previous experiments indicates a similar trend for the phase up to a mass of $1.5 \text{ GeV}/c^2$, but the amplitudes exhibit significant disagreement

Backup Slides

	/ II SII // und			
	$\eta_c \rightarrow K^0_S K^{\pm} \pi^{\mp}$		$\eta_c \rightarrow K^+ K^- \pi^0$	
Effect	Amplitude (%)	Phase $(\%)$	Amplitude (%)	Phase $(\%)$
Bias	9	7	8	14
Spline	4	5	4	5
Resonances	7	13	7	4
Purity	1	1	1	6
Efficiency	13	6	10	4
Total	18	17	15	17

• Average fractional systematic uncertainties on the amplitude and phases for $\eta_c \to K_S^0 K^+ \pi^-$ and $\eta_c \to K^+ K^- \pi^0$ MIPWA

- To calculate each systematic uncertainty contribution, we perform a new fit and, for each mass bin, calculate absolute value of the fractional deviation of the $K\pi$ S-wave amplitude and phase from the reference fit
 - The resulting distributions are fit using a Gaussian with zero mean

• We take the σ from the fit as the systematic uncertainty

• Average fractional systematic uncertainties on the amplitude and phases for $\eta_c \to K_S^0 K^+ \pi^-$ and $\eta_c \to K^+ K^- \pi^0$ MIPWA

	$\eta_c \rightarrow K^0_S K^{\pm} \pi^{\mp}$		$\eta_c \rightarrow K^+ K^- \pi^0$)
Effect	Amplitude (%)	Phase $(\%)$	Amplitude (%) Phase $(\%)$
Bias	9	7	8	14
Spline		5	1	5
Resonances	Calculate uno	certainty associ	iated with fit bias	by generating
Purity	MC simulate	d data using no	ominal MIPWA f	it parameters
Efficiency	and refitting.			
Total	18	17	15	17

• Average fractional systematic uncertainties on the amplitude and phases for $\eta_c \to K_S^0 K^+ \pi^-$ and $\eta_c \to K^+ K^- \pi^0$ MIPWA

	$\eta_c { ightarrow} K^0_S K^{\pm} \pi^{\mp}$		$\eta_c \rightarrow K^+ K^- \pi^0$	
Effect	Amplitude (%)	Phase $(\%)$	Amplitude (%)	Phase $(\%)$
Bias	9	7	8	14
Spline	4	5	4	5
Resonance.	7	13	7	4
Purity Efficiency	Rather than u	sing a constar	nt amplitude and ph	ase within
Total	amplitude and	l phase within	each bin	

• Average fractional systematic uncertainties on the amplitude and phases for $\eta_c \to K_S^0 K^+ \pi^-$ and $\eta_c \to K^+ K^- \pi^0$ MIPWA

	_			
	$\eta_c { ightarrow} K^0_S K^{\pm} \pi^{\mp}$		$\eta_c \rightarrow K^+ K^- \pi^0$	
Effect	Amplitude (%)	Phase $(\%)$	Amplitude (%)	Phase $(\%)$
Bias	9	7	8	14
\mathbf{Spline}	4	5	4	5
Resonances	7	13	7	4
Purity	1	1	1	6
Efficiency		1	10	
Total	- Ketit, removin	ng low signifi	cance resonances s	uch as the
	$ a_0(980)$ and	$a_2(1310)$		

• Average fractional systematic uncertainties on the amplitude and phases for $\eta_c \to K_S^0 K^+ \pi^-$ and $\eta_c \to K^+ K^- \pi^0$ MIPWA

	$\eta_c { ightarrow} K^0_S K^\pm \pi^\mp$		$\eta_c \rightarrow K^+ K^- \pi^0$	
Effect	Amplitude (%)	Phase $(\%)$	Amplitude (%)	Phase $(\%)$
Bias	9	7	8	14
Spline	4	5	4	5
Resonances	7	13	7	4
Purity 🔪	1	1	1	6
Efficiency	13	6	10	4
Total	18	17	15	17

Refit after increasing and decreasing the purity of the signal

• Average fractional systematic uncertainties on the amplitude and phases for $\eta_c \to K_S^0 K^+ \pi^-$ and $\eta_c \to K^+ K^- \pi^0$ MIPWA

	$\eta_c \rightarrow K^0_S K^{\pm} \pi^{\mp}$		$\eta_c \rightarrow K^+ K^- \pi^0$	
Effect	Amplitude (%)	Phase $(\%)$	Amplitude (%)	Phase (%)
Bias	9	7	8	14
Spline	4	5	4	5
Resonances	7	13	7	4
Purity	1	1	1	6
Efficiency	13	6	10	4
Total	18	17	15	17

Evaluate the effect of the efficiency variation as a function of $K\overline{K}\pi$ mass by computing separate efficiencies in the regions above and below the η_c mass

