Progress on Developing a Segmented Detector using ZnS:Ag/⁶Li

David Reyna Sandia National Laboratories, CA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-10449 C

Previous Prototype Deployment

- As part of a joint SNL/LLNL project to develop aboveground detector technology, we deployed a 4-cell prototype segmented scintillator system
 - Aboveground shielded and unshielded runs in 2011
 - Belowground deployment in 2012-2013
- Very encouraged by performance of Segmented Scintillator prototype
 - This technology is focused on reducing the overall footprint and enabling a transportable detector that can be deployed in highbackground or unshielded locations
 - Demonstrated rejection of backgrounds of 5 orders of magnitude even without an external shield

Segmented Scintillator Detector

- Individual Segments contain organic scintillator with ZnS:Ag/⁶LiF screens on outer surface
 - Tested cells with both plastic and liquid scintillator (plastic preferred)
- Use of ZnS:Ag with ⁶LiF allows identification of neutron capture
 - ZnS:Ag is sensitive to alpha from ncapture on Li
 - Very slow scintillator time constant (~100ns) allows pulse shape discrimination to separate n-capture from γ events
- This 4-cell prototype was intended for first testing background rejection only

Particle Identification (PID)

Neutron identification through Pulse Shape Discrimination (PSD)

Positron Identification through Topology

- Positrons are rare in nature
 - Deposit most of their kinetic energy very quickly through standard ionization losses
- Positrons will annihilate into two back-to-back 511 keV gammas
 - Very distinctive signature
 - Gammas will travel ~2-5" through most scintillators

Aboveground Data

David Reyna

Sandia National Laboratories

WLS Allows Extended Length

Test Bar	Attenuation length	Normalized neutron efficiency §
Original grease coupled 60cm	35.6 +- 1.2 cm	10.1 +- 0.9 %
WLS, air gap, 60 cm	118 +- 7 cm	10.8 +- 0.9 %
WLS, air gap, 120 cm	154 +- 11 cm	12.6 +- 1.2 %
WLS, air gap, 180 cm	200 +- 20 cm	10.9 +- 1.1 %

§ Efficiency calculated relative to a calibrated ³He detector and normalized to detector area

More details can be found in *Sweany et al, NIM A Volume 769, 1 January 2015, 37–43z*

This Study – Investigate Performance vs. Size Scaling

- Simulated detector configurations
 - Configurations of 3x3 to 11x11 (9 to 121 segments)
 - WLS segments of 180cm length
 - Position and energy smearing applied in post-processing
 - Low energy (100 keV) threshold applied for trigger
- Simulation of fast neutron backgrounds
 - Geant 4.10.1.p01 with QGSP_BERT_HP physics list
 - Older 4.9.5.p02 showed unphysical transitions in neutron spectra that made ~30% reduction in background events
 - Cosmic neutron generator from Gordon et al. (2004)
 - Distributed azimuthally like muons
- Simulation of antineutrino events
 - Coincident positron and 200 keV neutron
 - Uniformly distributed throughout

Gut-Check: Neutrons

Skin Depth: antinu 10² cosmic 10 • arb. units ٦Ů 10-2 120 0 20 40 60 80 100 number of segments

Neutron Captures in outer most segments

- antinu: neutrons started at center
- cosmic: pencil beam pointed at center

Rate normalized to total number of events

Neutron Wander:

Neutron Captures outside of e+ neighbors

- antinu: uniformly distributed
- cosmic: cosmogenic distribution

Rate normalized to total number of events

Suggests a neutron / e+ co-location cut will improve with size

Gut-Check: Positrons

Number of events for which the annihilation gammas are not in the 8 surrounding segments from the identified core e+ deposition

- antinu: uniformly distributed
- cosmic: cosmogenic distribution

Rate normalized to total number of events

Suggests a full e+ topology cut will improve with size

Impact of Antineutrino Event Selection

Overall efficiency for uniformly distributed antineutrino events passing an event definition

For large detectors, the most restrictive cut yields ~10% efficiency

Realistic Expectations

Expected Rates 25m from SONGS

Sanity Check

Approximate duplication of 50m deployment at SONGS

- 4-segments (60 cm)
- Reduced efficiency (non-WLS)
- No proximity selection

Cosmic: 7 events/day

Antinu: 1 events/day

Compares favorably with measured 6 events/day

Signal scales like mass but background <u>rejection</u> improves quicker

- This technology appears to be robust and scalable
 - Simulations agree with current measurements and confirm expectation that background rejection improves with size
- A 20' shipping container could be a functional system
 - Contain 520 2m-long segments
 - Total mass ~20 tons
 - Overall efficiency ~10% → ~ 2 tons "ideal"
 - Almost reach Huber's "ideal 5t detector"
 - Expected rates would be reasonable
 - Background rate ~400 events/day
 - Signal rate ~5 events/day/MW_{th} at 20m

Now we just need to build one and validate

