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Talk Outline

• Divided into three sections: 

1. Introduction and Motivation 

2. Ricochet Proposal 

3. Neutron Monitoring at MIT 
Research Reactor
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Part I: Introduction and Motivation
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Coherent ν Scattering

• σ: Cross Section 
• T: Recoil Energy 

• Eν: Neutrino 
Energy 

• GF: Fermi Constant 
• QW: Weak Charge 

• MA: Atomic Mass 
• F: Form Factor

Unique Properties: 
1)No flavor-specific terms -  
Same rate for νe, νμ, and ντ 
2) Potentially very high rate 

compared to other rare 
event searches
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Motivation
• Coherent 

Neutrino 
Scattering 
provides probes 
in several areas: 

• Probe of 
supernova 
physics 

• Sterile neutrino 
searches 

• Ability to probe 
Nuclear form 
factors at small 
Q2 

• Applications to 
nuclear 
proliferation 
monitoring
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Challenges

• Difficult source/detector 
problem 

• Very low average recoil 
energy - 3 options: 

• Different Target 

• Different Source 

• Higher detection 
Efficiency 

• Large backgrounds 
(neutrons) that can mimic 
your signal
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Different Neutrino Sources

Sources Pros Cons

Radioactive Sources 
(Electron Capture)

Mono-energetic, can place 
detector < 1m from source, 

ideal for sterile neutrino search

< 1 MeV energies require very 
low (~10 eVnr) thresholds, 

limited half-life, costly

Nuclear Reactors Free*, highest flux
Spectrum not well known 

below 1.8 MeV, site access can 
be difficult, potential neutron 

background

Spallation/Decay at 
Rest

Higher energies can use higher 
detector thresholds, timing can 

cut down backgrounds 
significantly

Prompt neutron flux; large 
shielding or distances needed

* Nothing is really free.
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Neutrino Sources
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3 sources to consider:  
Electron-capture sources     
Reactors                            
Decay-at-rest sources      
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Neutrino Sources

3 sources to consider:  
Electron-capture sources     
Reactors                            
Decay-at-rest sources      
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Focus on 
these 

reactor 
sources
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Part II: Detector Proposal

Ricochet
A Coherent Neutrino Scattering Program
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Detector Requirements

• Threshold is the name of the game 

• Important to understand intrinsic and external backgrounds 

• Low signal event rate 

• Sound familiar? 
• Detector could be optimized in terms of material, size and/or 

background rejection capabilities
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Setting the Threshold 

• Small average recoil energy 

• Ionization quenching factors 
small at these low energies 

• Scintillation threshold would 
produce poor statistics 

• Ideally you would want a large 
pure phonon detector, 
however;  

• “Sensitivity scales with 
volume, problems scale with 
surface area”
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Dark Matter Detectors
• Optimization of SuperCDMS-style 

detectors for low threshold (Silicon or 
Germanium) 

• Assume 100 eV threshold for reactor 
experiment @ 5 kg mass 

• Possibility of other materials (Osmium) 
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Dark Matter Detectors

• This represents a different approach to neutrino detection 

• Pure thermal detectors have in recent years shown promise 
in reducing their thresholds (see efforts by CDMSlite team) 

• Ricochet proposal seeks to use smaller detectors to 
measure thermal instead of athermal phonons  

• R&D ongoing at MIT
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CNS Signal
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Event Rates for 100 eVnr Threshold

MITR ATR HFIR(?)

Baseline 4 m 11 m 8 m

Ge 
evt/kg/day 3.6 9.6 15.3

Si 
evt/kg/day 1.8 4.7 7.7
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Part III: Neutron Monitoring at MITR



Backgrounds 

• γ, β, n, and α Backgrounds for this 
experiment fall into 3 categories: 

• Cosmogenic 

• Radiogenic 

• Reactor based 

• Work has been performed to simulate 
cosmogenic and radiogenic 
backgrounds in GEANT4 

• Current focus on neutron background 
both in simulation and in real life

18

CRY 
simulation

U,Th chain simulations



Neutron monitoring - Setup 
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Use of He3 Neutron Capture Detector (NCD) based on the following process:

 - Cylinder shape: 200 cm long, 5.08 cm diameter => active volume ~ 4000 cm3  
 - Gaseous TPC: 85% 3He + 15% CF4 @ 2.53 bar 
 - Charge readout: charge preamplifier Canberra 2001A  
 - Optimal HV: 1.95 kV 
 - Energy resolution @ 764 keV: 3.3%

Neutron monitoring
Detector

HV

preamplifier

NCD

n capture
events

3

vendredi 31 mai 13



Neutron Monitoring - PSD

• With pulse shape discrimination on amplitude and rise time we 
can define a neutron signal region with 99 percent efficiency!
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Pulse shape discrimination

Different type of events

- Alpha event: high energy events

- Glitch event (micro-discharge): Sharp rise and decay time constant characteristic of the CSP 

- Low ionizing event: electron recoils, muons, ... low dE/dX

- Neutron capture + nuclear recoils!: large dE/dX, the contour is defined with a 99% efficiency

vendredi 31 mai 13



Neutron monitoring - Transfer Functions 
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A Bonner sphere approach
NCD are mostly sensitive to thermal neutrons (cross section ~ 104 barns)  

Use layers of PVC to slow down neutrons due to multiple collisions with hydrogen (mostly) 

With PVC thicknesses up to 10 cm, we are sensitive to MeV neutrons!
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Neutron Monitoring - Current Efforts

• Current efforts are focused 
on developing a neutron MC 
that can reproduce the data 
collected at the MITR 

• Confirm that our transfer 
functions work 

• Perform an estimate of the 
neutron background we 
could expect with a CDMS 
style Silicon/Germanium 
Detector 
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Conclusion

• Coherent Neutrino Scattering offers an exciting probe into 
new physics as well as opening the door to several 
applications 

• Due to low per-event recoil energy, detection requires low-
threshold dark matter-style detectors 

• Current effects focus on neutron monitoring at MITR to 
outline expected background for Ricochet-style experiment 

• Results expected soon 



Thank you for your 
attention

Questions?




