

A Precision Oscillation and Spectrum Experiment

Karsten M. Heeger Yale University

on behalf of the PROSPECT collaboration prospect.yale.edu

AAP2015, December 7, 2015

A Short-Baseline Reactor Neutrino Experiment

Search for sterile neutrinos through neutrino oscillations

Test reactor anomaly

Test allowed oscillation parameter space

Measurement of the Relative Reactor Flux and Spectrum at Different Baselines independent of reactor models/predictions

Segmented detector

Relative measurement within detector

each segmented measures L/E

AAP2015, December 7, 2015

Karsten Heeger, Yale University

High Flux Isotope Reactor, Oak Ridge National Lab

US Research Reactor

Research Reactor Spectrum

HEU core provides static spectrum of mainly ²³⁵U.

power: 85 MW (research) fuel: highly enriched uranium (²³⁵U) core shape: cylindrical size: h=0.5m r=0.2m (compact) duty-cycle: 41%

Nucl. Instrum. Meth. A806 (2016) 401–419, arXiv:1506.03547, PROSPECT collaboration

Compact reactor core

Compact core (< 1m) avoids oscillation washout

Karsten Heeger, Yale University

PROSPECT Experimental Location

- established on-site operation
- easy access 24/7, user facility
- door to outside
- internet access, utilities

Karsten Heeger, Yale

PROSPECT Experiment

Physics Objectives

- 1. Search for short-baseline oscillation at distances <10m
- 2. Precision measurement of ^{235}U reactor \overline{v}_{e} spectrum

Antineutrino Detector I

One Experiment, 2 Detectors

whitepaper, arXiv:1309.7647 PROSPECT collaboration

physics program, on arXiv this week PROSPECT collaboration

Phase I

one movable detector AD-I, ~7-12 m baseline

Phase II

two detectors, movable AD-I, ~7-12m baseline stationary AD-II, ~15-19m baseline

- movable detector enables systematic control, background checks, and increased physics reach
- phased approach mitigates risks

Physics Objectives

- 1. Search for short-baseline oscillation at distances <10m
- 2. Precision measurement of ^{235}U reactor \overline{v}_{e} spectrum

One Experiment, 2 Detectors

whitepaper, arXiv:1309.7647 PROSPECT collaboration

physics program, on arXiv this week PROSPECT collaboration

Parameter	Value
Reactor	
Power	85 MW
Shape	Cylinder
Size	$0.2 \text{ m} r \times 0.5 \text{ m} h$
Fuel	HEU
Duty cycle	41% reactor-on
Antineutrino Detector 1 (AD-I)	
Cross-section	$1.2 \times 1.45 \text{ m}^2$
Proton density	$5.5 \times 10^{28} \text{ p/m}^3$
Total Target Mass	2940 kg
Fiducialized Target Mass	1480 kg
Baseline range	4.4 m
Efficiency in Fiducial Volume	42%
Position resolution	15 cm
Energy resolution	$4.5\%/\sqrt{E}$
S:B Ratio	3.1, 2.6, 1.8
Closest distance	6.9 m, 8.1 m, 9.4 m
Antineutrino Detector 2 (AD-II)	
Total Target Mass	~ 10 ton
Fiducialized Target Mass	$\sim 70\%$
Baseline range	$\sim 4 \text{ m}$
Efficiency in Fiducial Volume	42%
Position resolution	15 cm
Energy resolution	$4.5\%/\sqrt{E}$
S:B ratio	3.0
Closest distance	15 m
Operational Exposure	
Phase I	1, 3 years
Phase II	3 years

PROSPECT Physics

A Precision Oscillation Experiment

An experimental approach to test for oscillation of eV-scale neutrinos

Phase I = AD-I, 3 years Phase II = AD-I + AD-II, 3+3 years

Objectives

4σ test of best fit after 1 year >3σ test of favored region after 3 years 5σ test of allowed region after 3+3 years

AAP2015, December 7, 2015

Osc./Unosc.

PROSPECT Physics

A Precision Spectrum Experiment

A precision measurement to address spectral unknowns

Phase I = AD-I only

Objectives

Measurement of ²³⁵U spectrum Compare different reactor models Compare different reactor cores

Measurement of HEU (²³⁵U) spectrum

between 2-6 MeV: average stat. precision < 1.5%, systematics < 2%

PROSPECT Physics

Karsten Heeger, Yale

AAP2015, December 7, 2015

PROSPECT Phase I Detector System

Antineutrino Detector

PROSPECT Phase I Detector System

Antineutrino Detector

- 3000L of ⁶Li liquid scintillator
- 120 scintillator loaded cells, ~15x15x120cm
- double ended PMT readout, light guides, $<4-5\%/\sqrt{E}$ resolutions
- thin optical separators, minimal dead material
- containment vessel, filled in place

PROSPECT Event Detection

Event Identification

Prompt signal: 1-10 MeV positron from inverse beta decay (IBD)

Delay signal: ~0.5 MeV signal from neutron capture on ⁶Li

40µs delayed n capture

signal inverse beta decay (IBD) γ-like prompt, n-like delay

backgrounds fast neutron n-like prompt, n-like delay

> accidental gamma γ-like prompt, γ-like delay

Background reduction is key challenge

Karsten Heeger, Yale

PROSPECT Event Detection

Event Identification

Prompt signal: 1-10 MeV positron from inverse beta decay (IBD)

Delay signal: ~0.5 MeV signal from neutron capture on ⁶Li

40µs delayed n capture

Background Reduction through detector design & fiducialization

Pulse Shape Discrimination

signal inverse beta decay (IBD) γ-like prompt, n-like delay

backgrounds fast neutron n-like prompt, n-like delay

> accidental gamma γ-like prompt, γ-like delay

Background reduction is key challenge

Karsten Heeger, Yale

Lithium-loaded Liquid Scintillator

Development

Novel scintillator cocktail:

- PSD LiLS that is non-toxic, non-flammable
- extensive studies with LAB, Ultima Gold
- EJ-309 gave best light yield, PSD

Scintillator specs (PROSPECT-0.1):

- Light Yield_{EJ-309} = 11500 ph/MeV
- Light Yield_{LiLS} measured = 8200 ph/MeV
- prominent neutron capture peak in LiLS
- PSD FOM at (n, Li) is 1.79

PSD critical for background reduction

energy resolution (σ /E) of 5.2% at 0.6MeV_{ee}

PSD for Cf in LiEJ-309

(n,Li)-like delay in LiEJ-309

Internal reflectors

Prototype Detectors PROSPECT-20 w/ LiLS and Unloaded LS

- Compton edge of ⁶⁰Co and ²¹⁷Bi γ-rays and the quenched (n, Li) capture peak from ²⁵²Cf neutrons
- light collection: 522±16 PE/MeV

EJ-309 LS 15.2 cm 100 cm 00 cm 00

Acrylic cell

Pulse Shape Discrimination

PSD performance for Cf-252.

unloaded LS studies described in 2015 JINST 10 P11004, arXiv:1508.06575, PROSPECT collaboration

Antineutrino Detector Segmentation

Karsten Heeger, Yale

PROSPECT Shielding

Reactor Antineutrino Measurement Facility (RAMF) at HFIR

- local shielding next to reactor wall
- multi-layer passive shield around detector (water bricks, HDPE, borated HDPE, lead)
- general purpose digitizing electronics and DAQ
- general utilities
- easy access

PROSPECT Backgrounds at HFIR

Background Measurements at HFIR

varying reactor shields

Config. (1) Config. (2)

Config. (3) Config. (4)

Karsten Heeger, Yale

1-

3

4

x (m)

(1)

Counts/Me

10

Reactor On

Reactor Off

8

Energy (MeV)

6

PROSPECT Signal & Background

Simulated Signal and Background Spectra

Signal (dashed) and background (solid) prompt spectra are shown through selection cuts

Cuts	IBD signal	Cosmic BG
PSD	1630	2.1e6
Time (1, 2, 3)	1570	3.4e4
Spatial (4, 5)	1440	9900
Fiducial (6)	660	250

S/B better than 1:1 is predicted.

Rate and shape of the residual IBD-like background can be measured with high precision during reactor off periods.

simulated event rates, $0.8 \le E \le 7.2$ MeV after applying background rejection cuts

PROSPECT Calibration

pulsed laser sources

- LiLS light transmission
- PMT gain and timing

encapsulated γ sources

- energy scale
- scintillator non-linearity

neutron sources

- PSD calibration
- neutron detection efficiency

radioactive and cosmogenic backgrounds

will be used to monitor and calibrate detector response between source deployments

Example: PROSPECT-20

- through going muons
- ⁴⁰K
- n capture on ⁶Li

R&D on scintillator spiking with ²²⁷Ac

- segment uniformity, relative LiLS mass measurements

PROSPECT Detector and Shielding at HFIR Development

Characterize LS Aug 2014-Spring 2015

multi-laver

shielding

PROSPECT-2 Background studies Dec 2014 - Aug 2015

PROSPECT-20 Segment characterization Scintillator studies Background studies Spring/Summer 2015

PROSPECT-50 *Baseline design prototype* Winter 2015

PROSPECT-400*

Fiducialization and

background studies

Mid 2016

*Technically ready to proceed directly to near detector with available funding **PROSPECT AD-I** *Physics measurement* Late 2016

Validation of Monte Carlo from HFIR Data PR©SPECT

Monte Carlo Validation from operating multiple prototypes at HFIR site

PROSPECT-2

PROSPECT-20

Validation of Monte Carlo from HFIR Data PR©SPECT

- PROSPECT-20 measured cosmic backgrounds during reactor-off
- PROSPECT-20 'simple' Monte Carlo agrees well with data
- confident in extrapolating MC to Phase I detector
- after series of effective cuts, can reach S:B > 3:1
- surpasses physics goals target
- will measure these backgrounds during reactor-off time in Phase I

prototype deployment validated background Monte Carlo

200 t_a-t_a [µs]

PROSPECT-20 'IBD-like'

Validation of Monte Carlo from HFIR Data PR©SPECT

PROSPECT-20 at HFIR

- PROSPECT-20 measured cosmic backgrounds during reactor-off
- PROSPECT-20 'simple' Monte Carlo agrees well with data
- confident in extrapolating MC to Phase I detector
- after series of effective cuts, can reach S:B > 3:1
- surpasses physics goals target
- will measure these backgrounds during reactor-off time in Phase I

allows prediction of S:B for PROSPECT Phase I

Phase I simulated signal + cosmics after cuts IBD signal Cosmic BG

PROSPECT R&D and Technical Activities PROSPECT

PROSPECT Collaboration

site of experiment High Flux Isotope Reactor, Oak Ridge National Laboratory

prospect.yale.edu

Brookhaven National Laboratory **Drexel University** Illinois Institute of Technology Lawrence Livermore National Laboratory Le Moyne College National Institute of Standards and Technology Oak Ridge National Laboratory Temple University University of Tennessee University of Waterloo University of Wisconsin College of William and Mary Yale University

63 collaborators 13 institutions 3 national laboratories

Summary

- New data are needed to address the existing reactor anomalies.
- PROSPECT Phase I will
 - Probe favored region of eV-scale sterile neutrinos at >3 σ with 3 years of data.
 - Measure ²³⁵U \bar{v}_e spectrum, address spectral deviation, and provide new constraints on reactor antineutrino models complementary to current and future LEU measurements.
- PROSPECT R&D
 - Have developed LiLS detectors that can mitigate reactor- and cosmogenic related backgrounds.
 - Multiple detectors have been deployed at HFIR in preparation for full-size detector.
 - Completed R&D for technical verification and to mitigate technical, cost, and schedule risks.
- Ready to proceed with construction of Phase I.
- Data taking in 2017 with first physics results in 2018 possible.