Solid

Recent results from the SM1 run

Antonin Vacheret for the SoLid collaboration

AAP 2015 Arlington, Virginia, USA

Outline

- The SoLid experiment & technology
- New results from the first SoLid module
- summary and outlook

The SoLid experiment

ersonal communication. By courtesy of SCK•CEN

- Search for new oscillation
 - Precise position and energy measurement to demonstrate oscillation
- ²³⁵U flux measurement
 - improve reactor flux prediction
 - demonstrate reactor monitoring with a new generation of compact detectors
 3

SoLid collaboration

• 4 countries, 10 institutes, ~ 50 people and growing...

Sensitivity to a new massive neutral state

- S:B ~ 3
- Background is 1/E² and flat
- 2% relative energy scale uncertainty
- shape only measurement

Sensitivity to a new massive neutral state

- 40% IBD efficiency
- S:B ~ 3
- Background is 1/E² and flat
- 2% relative energy scale uncertainty
- shape only measurement

The neutrino source : BR2

Personal communication. By courtesy of SCK•CE

• Careful assessment of reactor backgrounds reveals low energy gamma-rays and very low neutron rate

• Pth = 72 MW at R1 port 5.0 m from core

- Compact source
- Highly enriched Uranium
 pure ²³⁵U antineutrino flux
- High Power (40-80) MW
- duty cycle : 150 days / year

SoLid detector module SM1

- 16 x 16 x 9 PVT cubes ightarrow
- 9 detector planes
- 288 read out channels
- 288 kg fiducial mass

- Robust neutron ID
- High segmentation
 - localisation of IBD
 - positron only energy reconstruction

SM1 module DAQ & trigger

Test run at BR2

SM1 run at BR2

- SM1 run Dec 2014 March 2015
 - 3-4 days reactor ON
 - ~ 1 month reactor OFF period in March

- Calibration with sources
 - ⁶⁰Co, AmBe in April 2015
 - ²⁵²Cf in situ August 2015

⁶LiF:ZnS neutron identification

- Identification based on neutron pulse shape
 - proportional to integral
- Data confirms robustness of ⁶LiF:ZnS neutron tag
 - neutron ID to be implemented in trigger decision

SM1 Neutron PID

• Can distinguish a neutron in millions of signals

Muons @ SoLid

- tracking of muons:
 - precise in-situ calibration and monitoring with dEdx
 - simplify source calibration
- Handle on correlated backgrounds

In situ calibration with muons

- in-situ energy calibration using dEdx
 - channels intercalibration
 - cube response equalisation
- Light yield measured : 25 PA/cube
- MPPC gain measured with dark count rate
 - no need for LED system

Calibration stability

- First look at stability over time
 - Very good stability of energy scale observed (few %)
- Temperature is well controlled at BR2 : ± 0.5 C variations

Muon correlated events

- Michel electrons activity observed
- Muon neutron-like events correlations observed
- Use for muon veto cut

Detector capture time : AmBe

• AmBe source run used to study fast neutron signature and time coincidence

Neutron capture time summary

Neutron capture time on LiF:ZnS(Ag)

IBD analysis

- First data processing completed
 - data reduction, filtering, calibration and reconstruction
- SM1 MC response tuning ongoing
- Study of background events and selection cuts started
 - Expect S:Bacc ~2:1 using cube segmentation
- aim for result early next year

IBD candidate event display

Summary

- The SoLid experiment will make a very sensitive search for antineutrino disappearance using a new generation of compact detector
- The SM1 run has been succesfull
 - Excellent neutron ID
 - Precise calibration with muons
 - cube PVT response equalisation at 1.5% level !
 - simplify calibration procedure
 - Low background at BR2 has been confirmed
 - segmentation is already effective in reducing accidental background
 - focus now on correlated signals and antineutrinos !
- more results in the new year

Outlook

- R&D phase now completed
- cost-performance optimisation ongoing
 - Light yield increase per fibre end
 - mechanical design
- Electronics
 - target lower cost-per-channel
 - development of a neutron trigger and new triggering scheme
 - increase low energy sensitivity
 - enable full use of event topology
- Construction phase to start early next year
- Phase I planned to start in second half of 2016

AmBe neutrons energy and capture time

• neutrons with short coincidence time are captured before reaching thermal energy

Proton target determination

- Precision measurement rely on precise target mass determination
 - $dN_p < 1\%$ achieved !

Flux determination

- Reactor group lead by Subatech and SCK•CEN experts
- MCNP geometry from BR2
- evolution validated in MURE
- Acceptance correction in tracking MC
- HEU core gives pure ²³⁵U flux :
 - key ingredient for precise flux determination

