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miniTimeCube	(mTC)	Concept	

•  Technology	demonstrator:	
–  ScinOllator-based	IBD	detecOon.	
–  Single	compact	detecOon	volume	(2.2	L).	
–  Portable.	
–  Fast	Oming	(100	ps)	for	event	

reconstrucOon	rather	than	opOcs.	
•  Fast	microchannel	plate	PMTs	(MCP-PMTs).	
•  MulO-GHz	sampling	electronics.	
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mTC	ScinOllator	

•  Eljen	Technology,	EJ-254	
•  1%	boron-doped	plasOc	scinOllator.	

–  0.2%	10B	
•  Fast:	2.2	ns	decay	Ome	
•  Dimensions:	13	cm	x	13	cm	x	13	cm	

–  IBD	neutrons:	typically	travel	~5	cm	in	~10	us.	
–  Efficiency	for	neutron	interacOon	in	the	volume	

is	~50%.	
–  Size	is	such	that	annihilaOon	gammas	deposit,	on	

average,	~1/3	of	their	energy.	

12/7/2015	 K.	Nishimura	-	mTC	@	AAP2015	 3	



mTC	Photodetectors:	MCP-PMTs	
•  Photonis	Planacon	XPS85012	

–  25	µm	pores.	
–  8x8	anode	structure.	
–  AcOve	area	~28	cm2.	
–  Typical	gain	~few	x	106.	
–  Transit	Ome	spread:	

•  ~120	ps	FWHM.	
•  ~50	ps	σ	core.		

•  Total	of	24	MCP-PMTs:	
–  Photocathode	area:	674	cm2	(66%).	
–  1536	channels.	
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Timing	distribu3on	from	
IEEE	Trans	Nucl	Sci.	2010	Sep	13;	57(5):	2417–2423.	Par3ally	populated	mTC.	



Expected	IBD	Prompt	&	Delayed	Signals	
•  Simulated	prompt	and	delayed	PE	

distribuOons,	including:	
–  ScinOllator	opOcal	properOes.	
–  OpOcal	couplings	and	opOcal	properOes	of	

MCP-PMT	glass.	
–  MCP-PMT	quantum	efficiency.	

12/7/2015	 K.	Nishimura	-	mTC	@	AAP2015	 5	

•  Prompt	signal:	
Ø  Generally	thousands	of	PE	(many	per	channel).	
Ø  Long-tail	of	“missing	PE”:	

§  Escaping	positrons	increasingly	likely	at	high	E.	
•  Delayed	signal:	

Ø  Typically	<	100	PE	(<<	1	PE	per	channel).	



Readout	Electronics	Requirements	
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•  High	channel	density:		
§  1536	channels	in	a	small	volume.	

•  Deep	buffering	to	accommodate	long	
potenOal	delay	between	prompt	and	
delayed	IBD	signals.	
§  Many	tens	of	microseconds.	

•  Self-triggering	capabiliOes.	
§  Delayed	signal	requires	channel-

level	triggering	on	single	PE	signals.	

•  Must	preserve	fast	Oming		
						informaOon	from	MCP-PMTs.	

§  Waveform	informaOon	desired	to	correct	
for	crosstalk,	properly	analyze	mulO-PE	
events,	etc.	

*Example	MCP-PMT	pulse	(not	Planacon)	



Front-end	Readout	ASIC	
•  MCP-PMT	signals	digiOzed	by	

waveform	sampling	electronics:	

•  “IRS”	series	ASICs	-	switched	
capacitor	array	with	deep	buffering.	
–  8	channels	per	ASIC.	
–  Sampling	rate	up	to	4	GSa/s.	

•  Nominal	operaOon	at	2.7	GSa/s.	
–  Buffer	depth	of	32,768	samples.	

•  12	μs	at	nominal	sampling	rate.	
–  Channel-level	triggers	allow	idenOficaOon	
of	regions-of-interest	in	analog	storage	
memory.	

–  On-chip	ADC	(Wilkinson)	digiOzes	64-
sample	blocks	in	~few	μs.	
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Front-end	Electronics	Packages	
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•  Cabling	and	interface	requirements:	
•  2x	CAT7,	RJ45:	

•  Trigger	and	clock.	
•  Remote	JTAG	programming.	

•  2x	LV	power	cable	bundles:	3,4,5	V.	
•  1x	fiberopOc	interface	to	DAQ	system.	
•  MMCX,	SMA	for	electrical	calib	signal.	
•  Input/output	cooling	connecOons	to	

chiller	plates	on	boardstack	housing.	

•  IRS	ASIC	serves	8	channels.		

•  4	x	ASICs	per	“carrier	board”	(32	channels).	

•  4	x	carrier	boards	per	“boardstack”	(128	channels).	

•  One	control	board	w/	FPGA	per	boardstack.	

•  One	boardstack	serves	2	Planacon	MCP-PMTs.	

•  12	boardstacks	required	to	instrument	24	Planacons.	

•  Total	envelope	per	boardstack	~10	cm	x	10	cm	x	8	cm.	



System	Electronics	
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•  Central	clock	and	trigger	board:	
–  Distributed	clock	synchronizes	sampling	

on	all	ASICs	in	the	system.	
–  Receives	lower-level	trigger	primiOves	

from	all	boardstacks.	
–  Issues	system	trigger	to	all	boardstacks.	
–  Fast	calibraOon	pulser	with	

programmable	delay	for	Oming	
calibraOons,	verificaOons.	

•  Other	custom	PCBs:	
–  High	voltage	distribuOon	card.	
–  JTAG	programming	card	to	reconfigure	

front-ends.	
Clock	and	trigger	distribu3on	board	



Auxiliary	Systems	
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•  Fast	laser	diode	system:	
–  Variable	arenuaOon	for	single/mulO	PE	studies.	
–  FiberopOc	steering	to	inject	at	any	of	6	faces.	

•  Data	acquisiOon	server.	
–  ConnecOons	to	front-end	through	commercial	

fiberopOc	gigabit	Ethernet	PCI	cards.	

•  Commercial	LV	and	HV	supplies.	
•  Cooling	(required	inside	radiaOon	shielding	cave)	

provided	by	external	chiller.	
•  UPS	system.	

mTC	chiller	 Laser	coupling	to	mTC	

Laser	diode,	a]enuators,	face	selec3on	



Ongoing	CalibraOons	
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•  CalibraOons	required:	
–  ASIC-level	Oming	calibraOons.	

•  Waveform	sampling	technique	results	
in	non-uniform	delays	

–  Channel-level	gain	maps.	
•  Laser	injecOon	at	single	PE	levels.	

–  Cosmic	ray	muons:	
•  Calibrate	light	yields.	
•  Validate	Oming	calibraOons	and	MC	
opOcal	models.	

Measured	muon	event	 Best	fit	reconstruc3on	

Preliminary	rela3ve	gain	map	

Reconstructed	muon	parameters	



Deployment	at	NCNR	
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•  mTC	will	be	deployed	at	NIST	Center	for	Neutron	Research	
(NCNR).	
–  20	MW	research	reactor.	
–  ~5	meters	from	split-core.	
è	~1	detected	neutrino	per	day.	
–  Shielding	cave	required	to	limit	neutron,	gamma	backgrounds.	

mTC	in	various	venues	



Background	SimulaOons	
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•  Geant4	simulaOons	used	to	model	
muon,	neutron,	and	gamma	
backgrounds.	
–  With	and	without	shielding	enclosure:	

•  Shielded	rates	are	used	to	esOmate	
accidental	coincidences	that	can	
fake	our	IBD	signal:	
è  Accidental	rate	esOmated	from	

simulaOon:	~1	/	day	
•  This	corresponds	to	an	SNR	of	~1:1.	
•  Correlated	backgrounds	need	further	

study.	Unshielded	HPGe	gamma	background	spectra	



•  Preliminary	reconstrucOon	criteria	
developed	to	study	performance	on	
simulated	IBD	events:	
–  Both	prompt	and	delayed	verOces	

must	be	>	5	mm	from	any	wall.	
•  Reduces	effecOve	volume	by	20%,	

from	2.2	L	to	1.7	L.	
–  Time	between	prompt,	delayed	

signals:	
•  Minimum:	50	ns.	
•  Maximum:	12	μs.	

–  Energy:	
•  Prompt:	1	–	8	MeV.	
•  Delayed:	40	–	400	keV.	

–  Detected	PE:	
•  Prompt:	20	–	10,000	
•  Delayed:	20	–	400		

	
è	Overall	efficiency	~30%.	

ReconstrucOon	&	Efficiency	
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*Results	shown	in	this	talk	are	for	a	
maximum	likelihood	fit	to	two	point	
sources	to	the	prompt,	delayed	verOces.	

Reconstruc3on	Efficiency	vs.	ν	Energy	



Simulated	Energy	ResoluOon	(1)	

•  Expected	energy	
resoluOon,	weighted	
by	reactor	spectrum:	

–  ~11%	including	tail.	
	
–  Tail	largely	correlated	
with	higher	energy	
events	where	positron	
is	not	fully	contained.	
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Simulated	Energy	ResoluOon	(2)	

•  Poorer	energy	resoluOon	observed	with	reconstructed	verOces	near	wall.	
•  Best	energy	performance	is	~11%	at	3-4	MeV.	
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Simulated	Vertex	ResoluOon	&	PoinOng	

•  DistribuOons	of	error	on	
reconstructed	prompt,	delayed	
verOces.	
–  Prompt	vertex	resoluOon	can	suffer	due	

to	low	light	at	low	energies,	incorrectly	
modeled	positron	track	length	at	higher	
energies.	
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•  Reconstructed	verOces	are	
used	to	point	back	to	
incoming	neutrino	and	study	
angular	resoluOon.	
–  σ	not	well	defined,	so	study	
distribuOons	over	cos(θ).	

–  We	also	define	vector	SNR:	
•  Mean	displacement	between	
verOces	/	uncertainty	in	one	of	
the	dimensions.	



DirecOonality	Performance	Comparisons	

•  Comparison	of	direcOonality	
performance	with	other	
simulated	detectors:	

–  Double	CHOOZ	and	(hypotheOcal)	
TREND	direcOonality	from:		

					arXiv:1307.2832.	

–  mTC	shows	good	potenOal	for	
direcOonal	reconstrucOon.	

–  IniOal	study	with	Li-doped	mTC	
shows	promise	for	further	
invesOgaOon.	
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mTC	Schedule	and	Outlook	
•  mTC	electronics	are	presently	being	

upgraded.	
–  Upgraded	amplifier	chains	and	ASICs	

address	SNR,	trigger	efficiency,	Oming	
precision	and	stability.	

•  ConstrucOon	of	shielding	cave	is	nearly	
complete.	
–  All	but	door	is	finished.	

•  Scheduled	to	install	mTC	inside	the	
shielding	cave	and	begin	operaOons	in	
early-mid	January.	
–  A	dry	run	of	this	was	conducted	last	

month	in	the	guide	hall.	
–  IniOal	checks	will	assess	background	rates,	

compare	to	simulaOon	&	other	detectors.	
–  First	physics	data	following	soon.	

•  Look	for	Rev.	Sci.	Instrum.	paper	on	
detector	(presently	under	review),	first	
ν-data	next	year.	
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Upgraded	electronics	3ming	distribu3ons		

mTC	in	(mostly)	assembled	cave	

σ	~	33	ps	


