Plastic Anti-Neutrino Detector Array (PANDA)

Yo Kato (The University of Tokyo)

Yasuhiro Kuroda^A, Shugo Oguri^B, Nozomu Tomita^A, Ryoko Nakata^A, Chikara Ito^C, Masato Takita^D, Yoshizumi Inoue^E, Makoto Minowa^{A,F}

The University of Tokyo^A High Energy Accelerator Research Organization (KEK)^B Japan Atomic Energy Agency (JAEA)^C ICRR, The University of Tokyo^D ICEPP, The University of Tokyo^E RESCEU, The University of Tokyo^F

> Applied Antineutrino Physics (AAP) Arlington, 7 Dec 2015

Reactor monitoring

Inspection by IAEA

- Nonproliferation of nuclear technology
- Current inspection tools are "intrusive", such as
 - -- neutron monitoring beside reactor cores
 - -- fuel monitoring before and after reactor operation
- -> Burden for both operator and inspector

International Atomic Energy Agency

IAEA proposed a "**non-intrusive**" inspection tool.

Final Report: Focused Workshop on Antineutrino Detection Safeguards Applications (2008)

Reactor monitoring using an antineutrino detector

- **High penetration** -> can be detected outside a reactor building
- No alternative source -> cannot hide reactor operation
- -> Suitable for inspection !

AAP2015

Reactor antineutrino

 235 U + n \rightarrow X₁ + X₂ + · · · + n + n + · · ·

 β decay of neutron-rich nuclei -> antineutrino

 $\begin{vmatrix} A \\ Z \\ X \\ A \\ Z+1 \end{vmatrix} X' + e^{-} + \bar{\nu_{e}} \\ \begin{vmatrix} A \\ Z+1 \\ X' \\ A \\ Z+2 \\ X'' + \cdots \end{vmatrix}$

6 antineutrinos 200MeV per fission

-- $3GW_{th}$ reactor emits 6×10^{20} neutrinos/s

PANDA (Plastic Anti-Neutrino Detector Array)

- Non-flammable plastic scintillator
- 10×10 segmented structure
- Measurement loaded on a van or a container

<u>Time line</u>

Data acquisition system (PANDA64)

Calibration

- ⁶⁰Co at 3 positions next to every module
- -> Reconstruction of - energy deposit
 - position

module-1 : chi2/dof:0.924412

900

800

700

600

500

400

300 200

100

600

500

400

300

200

100 0

0

0

0

50

width_left:4.59278 ,a_left:3.02529 ,b_left:11.4291 : width_right:4.40957 ,a_right:3.06285 ,b_right:8.10224 : d:0.695578 l:589.274 heights(source:L):5.52887 ,heights(source:C):5.63373 ,heights(source:R):5.52083

source-C pmt-L

100 150 200 250 300 350 400

300

source-L pmt-L

simulated F

measured

simulated

400

500

measured

source-C pmt-R

200

100

- Unit 2 : 3.42 GWth (PWR)
- Outside the reactor building (aboveground)
- 35.9m from the core
- 2011 November 2012 January
- Reactor on (30 days); off (34 days)

Background events

Accidental background

- -- Environmental gamma-ray
- -- Thermal neutrons
- -> Can be estimated using a shifted time window

Correlated background

- -- <u>Fast neutrons</u> (prompt-like event : proton recoil)
- -- Double neutron capture (caused by muon spallation)
- -- Long-lived cosmic ray activation product (⁹Li, ⁸He)
- -> Difficult to eliminate the effect of correlated background fluctuation

(e.g. water tanks installed around PANDA)

Selection cuts

	for antineutrino-like events	for fast neutron events
	Selection 1	Selection 2
Software trigger	At least two modules in inner 16 modules deposit energy of 150 keV or more.	At least two modules in inner 16 modules deposit energy of 150 keV or more.
Prompt	$3 \text{ MeV} \le E_{\text{total}} \le 6 \text{ MeV}$ $E_{2nd} \le 520 \text{ keV}$	$3 \text{ MeV} \le E_{\text{total}} \le 6 \text{ MeV}$ $E_{2nd} \ge 700 \text{ keV}$
Delayed	$3 \text{ MeV} \le E_{\text{total}} \le 8 \text{ MeV}$ $\frac{E_{3\text{rd}}}{E_{\text{total}}} \ge \frac{E_{1\text{st}}/E_{\text{total}} - 0.5}{5}$	$\frac{3 \text{ MeV} \le E_{\text{total}} \le 8 \text{ MeV}}{\frac{E_{3\text{rd}}}{E_{\text{total}}} \ge \frac{E_{1\text{st}}/E_{\text{total}} - 0.5}{5}$
Time window	$8 \mu \text{s} \le t \le 150 \mu \text{s}$	$8\mu\mathrm{s} \le t \le 50\mu\mathrm{s}$
Fiducial cut	The highest energy deposit is in inner 16 modules	The highest energy deposit is in inner 16 modules
Muon veto	There is no event with $E_{total} > 8$ MeV within 250 µs before the delayed event.	There is no event with $E_{total} > 8$ MeV within 250 µs before the delayed event.
Detection efficienc	y 3.15±0.93 %	0.271±0.93 %

Neutrino event rate

	Efficiency	
Prompt		
Trigger	28.6%	
Etotal cut	44.2%	
E2nd cut	82.2%	
Fiducial cut	93.5%	
Prompt Total	9.7%	
Delayed		
Trigger	48.8%	
Etotal cut	79.1%	
E3rd cut	91.9%	
Delayed Total	35.5%	
Time window	91.2%	
TOTAL	3.15%	

S. Oguri et al. Nuclear Instruments and Methods in Physics Research Section A 757 (2014) 33-39.

Shield construction (PANDA64)

24cm-thick 4π water shield (3.3 ton) around PANDA64 in 20ft container

Trigger rate at Hongo	~9.3 kHz (1 of 64 modules > 150 keV)	
Dead time by DAQ	~13% (latest version : < 10%)	
Muon rate ($E_{total} > 8 \text{ MeV}$)	~160 Hz (dead time by muon: 3.94%)	
Correlated BG rate	~1700 events/day (-40% vs no shield)	
Accidental BG rate	~500 events/day (-70% vs no shield)	

Current status and future plan

PANDA64: Development and test operation completed.PANDA100: Under development. (will be developed by March 2016)

PANDA64 or PANDA100 are planned to be installed at Ohi Power Station in 2016.

PANDA prototype	IBD detection efficiency	
PANDA36	3.2%	
PANDA64	6.2%	
PANDA100	9.2%	

Electron acceleration in thunderclouds

RREA (Relativistic Runaway Electron Avalanche)

Seed $e^- \rightarrow$ Acceleration (+ bremsstrahlung γ) -> Knock-on $e^- \rightarrow$ Acceleration (+ bremsstrahlung γ) -> Knock-on $e^- \rightarrow$

Observed at

mountaintops (summer) or coastal areas (winter)

Observation 2011 & 2014

	Observation 2011	Observation 2014
Detector	PANDA36 (36 modules)	PANDA64 (64 modules)
Location	Ohi Power Station (coastal area, 10m)	Norikura Observatory (mountaintop, 2770m)
Season	2 months in winter	2 months in summer
Motivation	Reactor monitoring	Thundercloud bursts
Trigger	2 of inside 16 modules	1 of 64 modules

Thundercloud gamma-ray burst

Ohi (10m) : 3 burst candidates detected in 62 days Norikura (2770m) : 12 burst candidates detected in 54 days

Neutron component in bursts (Ohi)

Neutron signal enhancement was detected by delayed coincidence method (Ohi/10m)

Estimation of electron source

Estimation of ele	王 2000		
			표 1800 양 1600
Dungt	Energy	f source	¥ 1400
Duist	[MeV]	$[/sec/m^2]$	1200
20140708-1 (Norikura)	65	$(2.62 \pm 0.37) \times 10^2$	800
20140718-1 (Norikura)	50	$(1.66 \pm 0.22) \times 10^2$	400
20140719-1 (Norikura)	55	$(0.98 \pm 0.15) \times 10^{2}$	10 20 30 40 50 60 70 80 90 100
20140731-1 (Norikura)	35	$(6.78 \pm 0.34) \times 10^{2}$	Energy [MeV]
20140822-1 (Norikura)	55	$(2.16 \pm 0.37) \times 10^2$	Simulation (300m,35MeV)
20140823-1 (Norikura)	40	$(1.28 \pm 0.04) \times 10^3$	
20140826-1 (Norikura)	95	$(2.40 \pm 0.40) \times 10^2$	
20140830-1 (Norikura)	80	$(0.95 \pm 0.12) \times 10^2$	
20140830-2 (Norikura)	65	$(1.29 \pm 0.22) \times 10^{2}$	
20140905-1 (Norikura)	50	$(1.45 \pm 0.14) \times 10^3$	Etot (total energy) [MeV]
20140905-2 (Norikura)	65	$(1.90 \pm 0.12) \times 10^{2}$	Runaway e ⁻ energy
20140905-3 (Norikura)	40	$(4.48 \pm 0.38) \times 10^2$	Norikura > Ohi
20111225 (Ohi)	16	$(4.7 \pm 0.3) \times 10^5$	
20120102 (Ohi)	16	$(1.4 \pm 0.0) \times 10^{6}$	Runaway e ⁻ flux
20120105 (Ohi)	16	$(2.4 \pm 0.1) \times 10^5$	Norikura << Ohi

Summary

1. PANDA project

- Non-flammable plastic scintillator (10×10 segmented structure)
- Measurement loaded on a van or a container

2. Reactor monitoring by PANDA

- 6x6 prototype of PANDA (PANDA36) was Ohi Power Station Unit 2 $(3.4 \text{GW}_{\text{th}})$
- Fully unmanned operation was demonstrated at ground surface
- Detected neutrino event rate was 21.8 ± 11.4 events/day (expected: 17.3 ± 6.2 events/day)
- Development of PANDA64 completed. Water shield reduces BG events.
- PANDA100 under development. IBD detection efficiency of 9.2% expected.
- Preparing for the measurement scheduled in 2016

3. Observation of thundercloud bursts

- 3 bursts detected by PANDA36 at Ohi Power Station (coast, 10 m)
- 12 bursts detected by PANDA64 at Norikura Observatory (mountain, 2770 m)
- Neutron signal enhancement detected using delayed coincidence