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Spectral Corrections
°

Correction Introduction

Sources of Corrections

7/ ~

NEUTRONS >
FOR SCIENCE Ve, 13

@ Used ‘single’ fissile spectra @ Mixture of all fissiles

@ Operated at high flux: @ Operate at lower fluxes:
O(10*n/cm?/sec) O(10'3 n/cm? /sec)

@ Low irradiation time: <2d @ Much higher irradiation

@ Measured beta-spectrum times: ~ 1yr
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Spectral Corrections
[ 1)

Known Corrections

Non-equilibrium Correction

© Mueller et al. conducted study in
2011 (PRC 83 054615) v/

Correction to infinite irradiation time (%)

o Long-lived nuclides building up in woRE 10 ]
-=-MURE- 12 h 7
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@ Low-E neutrino correction

@ ~1-4% correction for PWRs and typical irradiation periods
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Spectral Corrections
oe

Known Corrections

Spent Nuclear Fuel Correction

@ Zhou Bin et al. conducted study in 2012 (Chin.Phys. C 36
1-5) and indepedently verified by PJ v/

@ Long-lived nuclides in nearby spent fuel pools

@ Primarily from 90gy, 106R, and 1*4Ce (again)
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@ ~1-3% low-E neutrino correction for typical PWRs

Patrick Jaffke Applied Antineutrino Physics 2015 4



Non-linear
®000

NL Intro

Non-linear Correction

© Correction arising from neutron-capture in the reactor

@ Neutron capture usually small contribution (decay dominates)

@ However, some nuclides are dominantly produced by neutron
capture!

Goals:
@ Overall size of the non-linear (NL) correction
@ Spectral shape of the correction

© Dependence on the reactor
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Non-linear
0®00

NL Intro

Linear Nuclides

@ Most nuclide production (destruction) dominated by fission or
beta-decays (beta-decays)

P N
ANV
protons
»7; >
neutrons
dN
d_tN: —()\N+¢O'N)NN+)\BNB+(Z5UPNP

o Equilibrium decay rate linear in ¢ as F = ¢3¢
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Non-linear
feeX Yol

NL Intro

Non-linear (NL) Nuclides

@ Non-linear effect arises from nuclides with dominating
neutron-capture components (¢opNp)

N
9Tc
2x10%y
LQQMO BlOOMO
protons 66 hr [STABLE
9Nb
15s
neutrons

iy :// — (An +2on) Ny + XN + pop N,

@ Now, 19T¢ is a non-linear nuclide!
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Non-linear
oooe

NL Intro

Non-linear Candidates

About 30 nuclides satisfy the format; shorten via...
@ Large precursor cumulative fission yield chv:fl Z,'; >0.025
@ Large neutron capture cross-section op
© Non-linear nuclide N decays sufficiently quickly
@ Beta-decay of N has Eg > 1.8 MeV

‘ H 100 ‘ 104Rp ‘ 110Ag ‘ 142p, ‘

N  Ey (MeV) 32 | 2.45 2.9 2.15
N 7y (sec) 1554 | 42.3 246 | 68830
P Cumul. 235y(522b) || 0.061 | 0.031 | 0.00029 | 0.059

Fission Yields | 23°Pu(698b) | 0.062 | 0.069 | 0.017 | 0.052
(atoms/fiss.) [241p, (950b) || 0.056 | 0.065 | 0.030 | 0.049

P 0§ (b) 170 | 127 | 809 | 653
L7, (d) 275 | 393 | 057 | 325
L of (b) 157 | 7.08 | 182 | 267
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Non-linear
°

Limiting Behavior

Non-linear Limits

@ First, L must be in equilibrium to produce P, so Ty > 7112

@ Next, ¢ must be large enough to promote P(n,~v)N, but not
too large such that Ny A < N gof
In2 1

c
TL12 Of

o Critical flux given by ¢ =
> ¢=9x10" -2 x10'®n/cm?/sec (unphysical)
o If T;y > TL1/2 and ¢ < gzNS the non-linear decay rate is given by

fiss c 2
[ nhon—linear = O ¢ZP Tirr O'P(Zs < Tirr¢
—_———
atoms Np

o Decay rate proportional to ¢ T;, (non-linear) instead of ¢
(linear)
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Analytical Solution to NL
®0

Bateman Equations

Set-up
@ Start with the famous \ >,
Bateman equations Nas Ng 3
@ Originally used simple
decay-only chain T N
@ Generalize with inclusion Nay N2
of fission and neutron 0
capture R I
Na 1 Ng 1
S —_t —t
n
dNe i o 2 5
—dt Ya,i - F+ >\a,i—1 Na,i—l + Ua—lJQbNa—l,j - Aa,iNa,i
X=X+0o F = {Fuass, Fruzzo, Fruaar } Yoi= {Yg§i357 Yg§i35, YS§i35}
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Analytical Solution to NL
oce

Bateman Equations

Analytical Solution

@ Need to solve 3 linearly coupled non-homogeneous diff. eqn.s
dNL —ZL .7'— )\LNL %: Vp-ﬁ+)\LNL—¢U§NP

9 = posNp — Ay Ny

10

@ Analytical solution yields expected 1o
limits (turn-off at high flux and
increase with T;,) 100

Tire [d]

@ Abundance peaks for a
“sweet-spot” flux

10

0.1
10t 10% 10 104 1 10"

¢ [nfem?/sec]
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Computing the NL Correction
.

SCALE

SCALE Intro

@ SCALE converts core structure into 0d cross-section object
@ Depletes core along power history supplied

aN; . m —_
W — Z/ij)\ij +o Z ficok Ny — ()\i +¢0'i)Ni
j=1 k=1

@ w17 x 17 very similar to Daya
Bay/Ling Ao cores!

@ SCALE provides nuclide abundance
and fission rates at all time intervals
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Computing the NL Correction
®00

Calculating NL

Calculating Non-linear Contribution

Use SCALE to compute the non-linear correction:

@ Irradiate various reactors to their typical power history

@ Pull non-linear abundances and compute non-linear neutrino
spectrum: & (t, E)

© Pull fission rates and compute the reactor spectrum:
q)RX(t7 E)

@ Compute time-averaged non-linear correction:
(OnL(t, E)/Pre(t, E)) T,
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Calculating NL

Computational Results

Computing the NL Correction

oeo

Results:
5MW, IR40 l-batchPWR3-batch IRT ey 23"—5;“ 2ip, HFIR
Fuel/Moderator NU+C NU-+D,0 LEU+H,0 HEU+H,0 HEU+D,0 HEU+H0
Burn-up [MWd/1] 32380 31200 31510 1890000 2230 73x107° | 1.1x1074 | 1.7x107* 2550
¢ [n/cm?/sec] 1.6x10'2 | 3.6x10%% | 4.4x 10" | 44x10'% | 1.5x10* | 3.3x10™ | 3.3x10™ | 3.3x10™ | 2.5x 10
Max[(®nr./Or) 7] [%] 0.027 0.15 0.25 0.93 0.11 3.1x105 | 2.6x1073 | 4.7x1073 0.10
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Computing the NL Correction
ooe

Calculating NL

Non-linear Results

o Larger corrections for

10* T T T T
ns Y “sweet-spot” flux and high
5@: Tirr (i.e. high burnup)
1000 2.7x1072% oI1R1T°/ ] i
/' ° @ Small corrections for
Tir < 30d (ILL
100} HFIR 1
- s C10% measurements are safe)
= @ Commercial reactors can
10} 4 . .
ILL 2Py see a maximum non-linear
4.7x107°% o
effect ~ 1%
1 - 1 . .
L By @ Results in arXiv:1510.08948
2,6x107°% 235
ILL U
3.1x107°%
O 107 10° 107 107 10'®

¢; [nfcm?/sec]

Patrick Jaffke Applied Antineutrino Physics 2015 15



Summary

Correction Summary

6
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E, MeV]
@ Three corrections all with O(1%) effects

@ All corrections require detailed reactor simulations (and could
be more!)

@ Directly impacts geoneutrino searches
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Summary

Thank you!
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Summary

Producing a Reactor Spectrum
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Summary

Other Corrections?

© Shape/Forbiddenness Corrections (Hayes + Dwyer)?

. . y — Nonunique=[%, T
§ 0.2 [t wpu = Muclear Calculation
3 o) == [ Conversion, Huber — Nonunique y i
k] | s § Conversion, Muelier 7
= - Nuclear Calc., Fallot
3 :
w0
@ i
o
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£
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4
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© Neutron-capture (i.e. Non-linear) Correction?
@ 77
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Summary

Non-linear Nuclides

@ Test all nuclides in JEFF yields (900) for their linearity
@ Those with A ~ do for ¢ < 10 n/em?/sec given in black
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Summary

Analytical Solution

@ Solutions for L and P are...

w5

L

e [
PAL

3 |:~ )\LZL ’ ﬁ; :|(e_5\Lt _ e_¢gpt)
AL(gop —AL)
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Summary

Analytical Solution

@ Solution for N is...

o P
+[~ N/\LqﬁUFZL;f N :|(e—S\Lt_e—5\Nt)
AL(AL = ¢oF)(An = AL)
_I:(:\L—(ﬁO’F)Y/F'ﬁ"‘)\LZL'ﬁ](e—qja,:t_e—S\Nt)
(AL—¢or)(An — ¢oF)

Patrick Jaffke Applied Antineutrino Physics 2015 22



Summary

Analytical vs. Computational

5MW,
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Summary

Correction Result

@ 1-8% correction for low-E reactor 7, could swamp
geoneutrino signal
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