The potential to resolve spectral anomalies with different reactor experiments

Julia Haser, MPIK Heidelberg

AAP 2015, 8th December

Contents .

- 1. status of $\bar{\nu}_{e}$ reactor flux knowledge
 - predictions
 - measurements
- 2. $\bar{\nu}_e$ spectral shape distortion
 - predictions
 - measurements
- 3. experimental potential to gain new insights

$\bar{\nu}_e$ Spectrum Predictions

 Mueller et al., Phys. Rev. C83, 054615 (201 P. Huber, Phys. Rev. C84, 024617 (2011)
 A. A. Hahn, K. Schreckenbach et al., Phys. Let. B218,365 (1989) + refs. therein

θ_{13} Reactor Experiments

current high precision reactor experiments:

- inverse beta decay reaction
- organic liquid scintillator
- loaded with 1 g/L Gd
- measurement of θ₁₃ using
 ν
 ν e rate and spectral shape

Double Chooz

Daya Bay

RENO

2015/12/07 3 / 16

Reactor Anomalies

- Reactor Antineutrino Anomaly: 6% flux deficit between SBL reactor experiments and new predictions (2011)
 - ⇒ sterile searches

• spectral shape distortion relative to conversion spectra at $E_{\nu} \sim 6 \text{ MeV}$

Reactor Spectrum Distortion "Anomaly 2"

Double Chooz far detector

- spectral distortion above $E_{vis} = 4 \text{ MeV}$ observed by the DC experiment in 2014
- several crosschecks have shown
 - ${}^{\scriptscriptstyle \bullet}$ correlation of excess with reactor power at 3 σ
 - energy scale tested over full energy range
 - unknown background disfavoured
 - θ_{13} measurement is not affected

Spectral Distortion at km-Baseline Experiments

observation of DC of the distortion was confirmed by other reactor- ν experiments

Spectral Distortion in Predicted Spectrum (1)

- bump in the summation method spectra at 5-7 MeV
- at higher energies few decay branches constitute ~ 50 % of the total spectrum

Note: Dwyer's spectrum is incomplete and dominant contributions to systematic errors are missing

most	prominent	β -branches	for				
E > 4 MeV							

	4 - 5MeV	5-6MeV	6 - 7 MeV	7 - 8MeV
⁹² Rb	4.74%	11.49%	24.27%	37.98%
⁹⁶ Y	5.56%	10.75%	14.10%	-
¹⁴² Cs	3.35%	6.02%	7.93%	3.52%
¹⁰⁰ Nb	5.52%	6.03%	-	-
⁹³ Rb	2.34%	4.17%	6.78%	4.21%
^{98m} Y	2.43%	3.16%	4.57%	4.95%
¹³⁵ Te	4.01%	3.58%	-	-
^{104m} Nb	0.72%	1.82%	4.15%	7.76%
⁹⁰ Rb	1.90%	2.59%	1.40%	-
⁹⁵ Sr	2.65%	2.96%	-	-
⁹⁴ Rb	1.32%	2.06%	2.84%	3.96%

M. Fallot et al., PRL 109, 20254 (2012)

but: New Data Input on ⁹²Rb

• new data on 92 Rb lead to change in BR of GS \rightarrow GS transition

- Dwyer's conclusions change with new data
- results very sensitive to database info \rightarrow further measurements needed

Spectral Distortion in Predicted Spectrum (2)

publication by Hayes et al. (2015)

- disfavoured as main origin of the distortion:
 - non-fission ν sources
 - correction terms of forbidden decays
- fission yield databases (ENDF & JEFF):
 - \blacktriangleright disagreement of $\sim 20\,\%$ for some nuclei
 - change the shape of prediction
- considerations:
 - ${\scriptstyle \bullet}\,$ correlation of the distortion and $^{238}{\rm U}$
 - influence of the neutron energy spectrum inside a reactor core

Spectral Distortion in Predicted Spectrum (3)

- Imitations of summation method:
 - missing information \rightarrow large uncertainties
 - spectral shape depends on the choice of database
 - absolute normalization of β -spectra lower compared to ILL data

⇒ experimental input needed

Reactor Experiments

Current Reactor Experiments

```
 measure the mixing angle θ<sub>13</sub>
 high flux

         μ
         commercial reactor
         μ
         LEU fuel (<sup>235</sup>U, <sup>238</sup>U, <sup>239</sup>Pu, <sup>241</sup>Pu)
```


Reactor Experiments

Double Chooz & Stereo

θ_{13} experiment

Double Chooz near detector:

- 10 m³ Gd-LS
- = 400 m to $2\times4.3\,GW_{th}$ cores
- ~ 300 $\bar{\nu}_e$ per day
- data since end of 2014
- S/B ≈ 20
- $\sigma_E/E \sim 8\%$
- e-scale uncert.: sub-% level

Double Chooz & Stereo

θ_{13} experiment

Double Chooz near detector:

- 10 m³ Gd-LS
- = 400 m to $2\times4.3\,GW_{th}$ cores
- ~ 300 $\bar{\nu}_e$ per day
- data since end of 2014
- S/B ≈ 20
- $\sigma_E/E \sim 8\%$
- e-scale uncert.: sub-% level

sterile ν experiment

Stereo detector:

- 2 ton Gd-LS
- 8-11 m to 50 MW_{th} core
- ~400 $\bar{\nu}_e$ per day
- starts operation in 2016
- highly enriched in ²³⁵U

2015/12/07 12 / 16

LEU vs. HEU Measurement - Assumptions

- statistics for 2 years runtime (~ 1.5 · 10⁵ events)
- average Double Chooz LEU fission fraction

²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu
0.51	0.34	0.09	0.06

- Stereo: pure ²³⁵U spectrum
- reference spectra from Huber and Haag
- gaussian excess added to the spectra

Three Hypotheses

 Double Chooz near detector: excess in rate and shape as for

the far detector

- Stereo:
 - 1. excess as in Double Chooz
 - no excess observed (any other actinide but ²³⁵U)
 - 3. excess only caused by 235 U

HEU to LEU Ratio

 \Rightarrow ratio of HEU to LEU spectrum for different hypotheses

- 2 y runtime
- uncertainties: statistical + reference spectra

arXiv:1512:xxx C. Buck, A.P. Collin, J. Haser, M. Lindner

HEU to LEU Ratio

 \Rightarrow ratio of HEU to LEU spectrum for different hypotheses

- 2 y runtime
- uncertainties: statistical + reference spectra
- significance of discrepancy
 [5,7] MeV:
 - ► only ²³⁵U: 4.2 σ
 - no excess in HEU: 5.5 σ

arXiv:1512:xxx C. Buck, A.P. Collin, J. Haser, M. Lindner

HEU to LEU Ratio

 \Rightarrow ratio of HEU to LEU spectrum for different hypotheses

arXiv:1512:xxx C. Buck, A.P. Collin, J. Haser, M. Lindner

- 2 y runtime
- uncertainties: statistical + reference spectra
- significance of discrepancy
 [5,7] MeV:
 - ► only ²³⁵U: 4.2 σ
 - no excess in HEU: 5.5 σ
- significance including energy resolution:
 - only ²³⁵U: 3.7 σ
 - no excess in HEU: 4.7 σ

Conclusion _____

- spectral distortion relative to conversion spectra observed at E_{ν} = 6 MeV in currently measured reactor $\bar{\nu}$ spectra
- summation method prediction:
 - large uncertainties due to missing information
 - result depends on database
- origin of the spectral distortion still unknown
- \implies more experimental input needed
- = HEU to LEU data ratio could distinguish between specific hypotheses at ~ 4 σ

Thank you for your attention!

Julia Haser MPIK Heidelberg julia.haser@mpi-hd.mpg.de

Appendix

Influence of new ²³⁸U Spectrum

- ²³⁸U β-spectrum measured by Haag (2013)
- Double Chooz uses Haag spectrum in their prediction
- distortion seen for ENDF and JEFF database
- can be explained by Haag-Mueller ratio: slope wrt E_{ν}

Spectrum distortion (1)

- RRM fit with free reactor normalization performed for different energy ranges
- excess at 4.25 6 MeV consistent with an unaccounted reactor flux
 - + the significance wrt flux prediction is 3σ with BG constraint from our estimation

- data-driven study of this energy region:
 - correlation of excess with reactor power
 - not only limited to n-Gd sample

2015/12/07 20

Spectrum distortion (2)

- same pattern observed in DC-II results with different detection channels (Gd, H) and detector volumes (Target and Gamma-Catcher)
- better resolved with DC-III (more statistics, better energy scale and less background)