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Antineutrino Interactions 

ve + p→ e+ + n
E. Caden (AAP, 2012) 
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Inverse Beta Decay 
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Directionality 

Inverse Beta Decay Electron Scattering 
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C. Langbrandtner (Ph.D. Thesis, 2011) 

ve

•  Reduce background from multiple nearby reactors 
•  Search for clandestine reactors 
•  Supernova pointing 



Reactor Energy Spectrum* 

Detectable = folded with cross section 
Summed = weighted sum using typical mid-cycle PWR fission fractions 

(49.6% 235U, 35.1% 239Pu, 8.7% 238U, 6.6% 241Pu)** 
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* P. Vogel, J. Engel, Phys. Rev. D 39, 3378 (1989) 
**  G. Zacek et al., Phys. Rev. D 34, 2621 (1986)  
 



Baseline Detector Design 
•  Access to existing GEANT4 simulation of WATCHMAN detector 
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Note: WATCHMAN not originally designed for directionality 

•  3.1 kilotons of Gd-doped water total 
•  2.1 kiloton target 

•  ~ 4300 12-inch PMTs facing target 
•  1 kiloton veto 

•  ~ 480 12-inch PMTs facing veto 
•  1 kiloton fiducial 
•  1.5 meter buffer 
•  Assume low-background PMTs 
•  1500 m.w.e. overburden 
•  13 km standoff from 3.758 GWth LWR 



Expected ES Signal 

                                                                                           
 
•  Simulations done with GEANT4 simulation RMSim 
•  Event reconstruction done with BONSAI 

R⌫̄e/e� =
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RMSim imposes 16 PE trigger threshold 
       à 17% detection efficiency 

5 years	
   5 years	
  

(~ 9270 events/5 years) 
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Cosmogenic Radionuclides 
•  β+/- decay of 16N, 15C, 11Be, 8B, 8Li 

•  Utilize yields from Super-K FLUKA study* 
 

•  Muon rates (relative to KamLAND) obtained from GEANT4 simulation of 
muons as a function of depth 
•  provided by David Reyna (SNL)** 
                 

•  Impose a 10 sec position sensitive veto 
•  1 meter tube for non-showering muons 
•  2 meter tube for showering muons 

•  Results in 67% livetime 
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•  Remove events that reconstruct as more 
than one Cherenkov cone 
•  evidence of coincident β and γ 

* S. Li, J. Beacom, Phys. Rev. C 89, 045801 (2014) 
** D. Reyna, arXiv:0604145v2 (2006)	
  



PMT Backgrounds 
•  Mostly interact in buffer, however uncertainty in reconstruction can 

place them in the fiducial volume 

à Use exponential 
behavior to estimate 
backgrounds 
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222Rn / 214Bi 

•  Presence of radon gas in detector medium 
•  Trace amounts of naturally occurring 238U 
•  Radon gas migrating out of PMT glass 
•  Radon gas leaking into detector from mine air 

•  Estimate with radon contamination of 10-14 gU/gD2O published by SNO* 

•  Including 67% livetime and 20% detection efficiency results in                  
1350 events/day (~ 2.5 x 106 events/5 years) 
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à Progress must be made in radon removal 
•  Radon free air 
•  Uranium removal 
•  Directed clean water flow (permeable acrylic barrier) 
 
à Beginning to investigate these methods 

* I. Belvis et al., Nucl. Instrum. Methods A 517, 139 (2004) 



Other Backgrounds 
•  Steel/rock γ’s and solar ν scaled from IsoDAR study on KamLAND* 

•  Take into account larger fiducial volume and different livetime 
 

•  Misidentified IBD interactions estimated assuming an event rate of 
20 events/day and a 20% missed neutron rate 

1 year 

à Look to higher energies 
à Reduce fiducial volume 
à Reduce radon 
 
à More overburden 
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* M. Toups et al., Phys. Rev. D 89, 072010 (2014)  



WATCHMAN vs. Radon 
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•  Low energy slice only relevant with significant fiducialization and 
radon reduction 

•  Without radon reduction, high energy cuts must be used 
•  But radionuclides begin to dominate 

*5 years 



1 × SNO radon 10-4 × SNO radon 10-2 × SNO radon 

*Data represents mean value of multiple repeated experiments 

Sensitivity vs. Depth 
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•  Determine RN background as function of depth 
•  Recalculate significance for each depth and various radon levels 

*5 years 



1 × SNO Radon 10-4 × SNO Radon 10-2 × SNO Radon 

*Data represents mean value of multiple repeated experiments 

Sensitivity vs. Depth vs. Size 
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•  Now determine the detector size required for 3σ 
•  Scale signal with volume, scale significance with signal to noise ratio 

*5 years 



Conclusions 
•  Similar radon contamination as SNO à  need much larger detector (> 40 ktons) 
•  ×100 reduction in radon à need combination of a larger and deeper detector 
•  ×10,000 reduction in radon à 3 kton detector at 1500 m.w.e. (WATCHMAN) 

should be directionally sensitive 

•  Assumes full power reactor operation with no shutdown periods 
•  Fission fractions are constant in time (no burnup) 
•  Technically the directional sensitivity with respect to an assumed direction  

•  Need statistical penalty for testing in multiple directions 

•  Paper being submitted to journal soon 
•  Currently at arXiv:1512.00527 
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Questions? 
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Significance Calculation 
•  Background assumed to be isotropic (ignore solar anisotropy) 
•  Fit signal with constant + exponential (A + BeCx) 
•  Use calibration source to predetermine exponential slope, C 
•  Use uncertainty in exponential normalization B to determine signal 

significance 

B 
Significance (σ ) = δB

B

(This is an exaggerated example) 
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Sensitivity vs. Depth 

à As we increase the depth, we can increase 
veto time without sacrificing livetime 
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Muon rate scaling with depth 
(relative to KamLAND) 

Adjust veto time to reduce more 
RN with depth 
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