

The Double Chooz experiment Directionality studies and latest results December 8 - AAP 2015 / Virginia Tech

Timothée Brugière IPHC

Neutrino directionality -General aspect

Neutrino directionality is an interesting information in a various number of fields :

- ν astronomy \rightarrow SN early detection
- ν from reactors \rightarrow Power plant location and activities
- Geo $\nu \rightarrow$ origin determination (crust, mantle)
- For everyone \rightarrow background rejection

How to determinate the \boldsymbol{v} direction :

- Elastic scattering : $\nu_{e} + e^{-} \rightarrow \nu_{e} + e^{-}$
 - Good directionality information
 - Background
 - SK, SNO, Borexino, ...

- Hard to obtain information on direction
- Clean signature
- Double Chooz, DB, Reno, ...

Timothée Brugière

The Double Chooz experiment

<u>Aim of the Double Chooz experiment</u> \rightarrow Measurement of θ_{13} through the observation of $\overline{\nu_{2}} \rightarrow \overline{\nu_{2}}$ transition according to the oscillation probability :

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2(2\theta_{13}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4 E}\right) + O(10^{-3}) \text{ for } L/E \lesssim 1$$

<u>Reactors</u>: Pure $\bar{\nu}_{e}$, low energy, high intensity ($10^{21} \bar{\nu}_{e}/s$)

 \rightarrow Short baseline, no matter effect

2 identical detectors : Cancel flux & efficiency uncertainties

 \rightarrow Unoscillated flux @ Near, disappearance around the first minimum @ Far

Power plant @ Chooz (France)

Neutrino detection in Double Chooz

<u>**IBD threshold**</u> \rightarrow 1.8 MeV

<u>Shielding</u> \rightarrow @ Far : 150mm of steel / @ Near : 1m of water

Timothée Brugière

Timothée Brugière

December 8 - AAP 2015 / Virginia Tech

Candidates selection in Double Chooz

Veto on single triggers :

- <u>Muon veto</u> \rightarrow no triggers 1ms after a muon (1.25 ms for H)
- $\underline{OV} \rightarrow No$ coincidence with the Outer Veto
- <u>Li+He veto</u> \rightarrow Likelihood trained on ^{12}B : 50% rejection and deadtime < 0.5%
- $\underline{\text{IV}} \rightarrow \text{Cut}$ on charge, multiplicity and space/time coincidence (fast n, stopped µ, γ scattering)
- <u>FV</u> \rightarrow stopped µspontaneous light emission
- $\underline{MPS} \rightarrow \text{Stopping muon}$ (H only)
- <u>Light noise</u> \rightarrow rejection based on PMTs charge/time distribution

Neutrino candidates selection :

	Gd	н
- <u>Prompt energy</u>	0.5 –20 MeV	1 –20 MeV (H)
- <u>Delayed energy</u>	4 –10 MeV	1.3 –3 MeV (H)
- <u>Δ†</u>	0.5 –150 µs	0.5-800 µs
- ΔR (distance "p - d)	< l m	< 1.2 m
- <u>Isolation window</u> (prompt)	(-200, +600) µs	(-800, +900) µs

to reject random coincidences (H-only)

- <u>ANN cut</u> \rightarrow Multivariate tool using Δt , ΔR and $E_{dalaved}$

Double Chooz event rate monitoring

Neutron capture on Gd

Neutron capture on H

Timothée Brugière

December 8 - AAP 2015 / Virginia Tech

TBLE

Reactor Rate Modulation (RRM)

December 8 - AAP 2015 / Virginia Tech

- Comparison of observed vs. Expected IBD rates at different powers
- Fit of $sin^22\theta_{13}$ and total background rate (B) :

 $R^{obs} = \mathbf{B} + \left(1 - \sin^2 2\theta_{13} \left\langle \sin^2 \frac{1.27 \Delta m^2 L}{E_{\nu}} \right\rangle \right) R^{exp, \text{ no osc}}$

- Constrain with a priori background model \rightarrow increase sin²2 θ_{13} precision
- Very good agreement between Gd and H data :

 $\sin^2 2\theta_{13} = 0.090 \pm 0.033$

H only: $\sin^2 2\theta_{13} = 0.098^{+0.038}_{-0.039}$, Gd only: $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$ Correlations between Gd and H have minimal impact. This result assumes no correlation.

Rate + Shape fit

- The rate and the shape information were used in the fit for $\theta_{_{13}}$ measurement
- The major improvements with respect to previous analyses are :
 - Finer binning (more statistics)
 - Larger energy range (0,5 -20 MeV)
 - \rightarrow more precision on the background
 - Data driven background shape
 - Reactor off-off data included as a separate term in the χ^2 (low stat \rightarrow rate only)

<u>Results:</u>

Excess @ 5 MeV

- Given the results of RRM + the tests with addition artificial excess around 5 MeV :
 → no impact seen on θ₁₃ measurement
- The strong correlation of the excess with the reactor power :
 - → points indeed towards an unaccounted component of the reactor flux.
 - → **disfavors** the possibility of an **unaccounted background component**.

Directionality with IBD

• Double Chooz is not the best tool to measure neutrino directionality, but It has some assets to test the precision of the method :

- $\bar{\nu}_{e}$ origin is known (reactors)
- Different reactor configurations : \rightarrow ON-ON and ON-OFF
- 2 samples for cross-checks : \rightarrow n-Gd and n-H captures

Neutrino detection in Double Chooz

 $\rightarrow e^+$ vertex assumed to be the $\overline{\nu}_e$ vertex

- Correlation between the $\bar{\nu}_{_{\rm e}}$ and the emitted neutron direction :

$\frac{\text{Emission angle}}{\left[\cos\left(\theta_{n}\right)_{\max}=\frac{\sqrt{2E_{\bar{\nu}_{e}}\Delta-\left(\Delta^{2}-m_{e}^{2}\right)}}{E_{\bar{\nu}_{e}}}\right]}$ $(\Delta = M_{n} - M_{p})$

Scattering angle

$$\left| \left\langle \cos\left(\theta_n\right) \right\rangle = \frac{2}{3A} \right|$$

 $(A \rightarrow atomic number)$

Double Chooz spatial resolution : ~ 15 cm \rightarrow mean information is extracted

Timothée Brugière

Phys. Rev. D 60 (1999) 033007 → me Phys. Rev. D 61 (2001) 012001 December 8 - AAP 2015 / Virginia Tech

Results on Gadolinium

- No Impact on θ_{13}
- New study using cosmogenics will come soon!

Timothée Brugière

December 8 - AAP 2015 / Virginia Tech

z_{reco} (mm)

Results on Gadolinium

• Final result on Gd :

Gd analysis	$\phi\left(^{\circ} ight)$	$ heta\left(^{\circ} ight)$	δ (°)
Data	85.8	98.1	7.0
MC	84.0	89.6	0.7

• Analysis of 1-reactor OFF data :

B1 off	Events	ϕ (°)	$ heta\left(^{\circ} ight)$	$\delta\left(^{\circ} ight)$
Gd analysis	1432	86.3°	109.8°	26.1°
H analysis	1142	81.0°	101.7°	26.4°
B2 off	Events	$\phi\left(^{\circ} ight)$	$ heta\left(^{\circ} ight)$	$\delta\left(^{\circ} ight)$
Gd analysis	3464	95.2°	95.7°	13.5°
H analysis	2620	73.2°	94.6°	15.3°

The reactors are 6° apart for far detector :

- \rightarrow Compatible with the results
- \rightarrow Need more statistics

TBLE

Results on hydrogen

CHER COL

<u>n-H candidates selection :</u>

- H analysis was not finalized at the time of this study
- Accidental background dominate at low energy :
 - \rightarrow additional cut on E_{prompt} (>3.5MeV)
 - \rightarrow selection of a purer sample
- ΔT and ΔR correlated with the directionality measurement :
- \rightarrow cuts not implemented for the selection

• Final result on H :

H analysis	$\phi\left(^{\circ} ight)$	$ heta\left(^{\circ} ight)$	$\delta\left(^{\circ} ight)$
Data	73.0	88.5	8.9
MC	84.4	87.3	1.1

Timothée Brugière

Results comparison

 \rightarrow Very good agreement between n-Gd, n-H and respective MC results

OTIBLE

o-Ps in Double Chooz

• Electron/Positron :

- Direct annihilation
- Metastable bound state
 - \rightarrow Positronium
- 2 possible congurations :
 - para-Positronium (p-Ps / BR : 25%, spin 0)
 - ortho-Positronium (o-Ps / BR : 75%, spin 1)
- Matter effects :
 - Reduce o-Ps lifetime to a few ns

Positron identication :

- 2 contributions in prompt signal :
- \rightarrow o-Ps state observation via detection of 2 γ s of 511keV each after the ionization signal

<u>Why :</u>

Select pure sample of ve. (
$${}^{9}Li \rightarrow {}^{8}Be + n + e^{-}$$
)

Scintillator	o-Ps formation fraction	o-Ps lifetime
Target	$47.6 \pm 1.3 \%$	$3.42 \pm 0.03 \text{ ns}$
Gamma Catcher	$45.6\pm1.3~\%$	$3.45\pm0.03~\mathrm{ns}$

Timothée Brugière

o-Ps in Double Chooz

Prompt signal fit

Delayed signal fit

Fitted $\Delta t = 16.0 \text{ ns}$

Global fit

40

30

20

10

Pulse Shape (PS) :

 \rightarrow Time distribution of PMT signals

Entries/ns

Second peak : annihilation \rightarrow 2 x 511 keV

Timothée Brugière

50 60 Time (ns)

o-Ps in Double Chooz

- Energy cuts applied : (1.2 MeV \rightarrow 3 MeV)
 - under 1.2 MeV : first peak too small
 - over 3 MeV : second peak masked by the first peak tail
- Cobalt distribution "large"
- \rightarrow But effect clearly visible for $\Delta t > 5$ ns

	o-Ps formation fraction error [%]	o-Ps lifetime error [ns]
Measurements with dedicated setup	47.6 ± 1.3	3.42 ± 0.03
DC (II publication) results	$44 \pm 5 \text{ (stat.)} \pm 12 \text{ (sys.)}$	3.68 ± 0.15 (stat.) ± 0.17 (sys.)

Ortho-positronium observation in the Double Chooz Experiment (JHEP10(2014)032)

Timothée Brugière

Characterization of positronium properties in doped liquid scintillators (Phys. Rev. C - 2013 - NuToPs ANR)

Future with Near+Far data

- The near detector commissioning ended in December 2014 and the data taking has started.
- The projected sensitivity shows an error on $sin^22\theta_{_{13}}$ of 0.015 in 3 years.
- Further analysis improvements will make possible a reduction to the level of $\sigma \sim 0.01$.
- Really interesting for directionality studies
 → more stat.
 - \rightarrow better sensitivity to distinguish each reactor

$\underline{\theta}_{13}$ measurement :

- Rate + Shape measurement with neutron capture on Gd and H.
- RRM analysis with neutron capture on Gd and H.
 - \rightarrow Multiple cross-checks
- New data taking since December 2014 with Near + Far configuration !

Neutrino directionality :

- Capability to measure neutrino source direction by the inverse $\boldsymbol{\beta}$ decay process
- The mean heutrino wind "direction has been obtained using IBD candidates with neutron capture on Gd and H.
- sensitivity to each reactor has been observed, but need more stat.
 - \rightarrow Analysis using near detector data coming soon !

Double Chooz collaboration

Thank you !