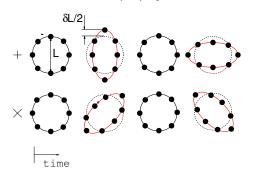
LISA: The space-based gravitational wave observatory

Josep Sanjuán for the UF LISA Group University of Florida

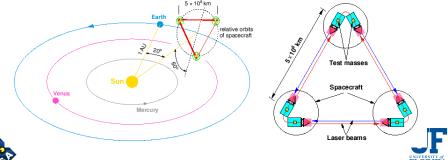
> October 21, 2011 SESAPS 2011, Roanoke, VA



Gravitational waves

GWs: ripples of the space-time geometry caused by assymetric movements of a mass distribution (vibrations of the spacetime fabric)

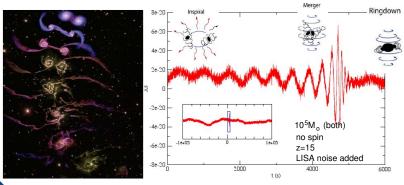
- · travel at the speed of light
- 2 polarization modes ('+' and 'x')
- transverse to the direction of propagation



Strain :
$$h = \frac{\delta \ell}{\ell} = \frac{2G}{c^4} \frac{\ddot{Q}}{r} \sim 10^{-21}$$

GW detection: LISA mission

- 3 SC in heliocentric orbit at 45 Mkm behind the Earth
- Equilateral triangle of 5 × 10⁶ km side
- 2 proof masses (PMs) in free fall in each SC
- Giant Michelson interferometer measures changes in light travel time between the proof masses

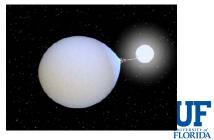


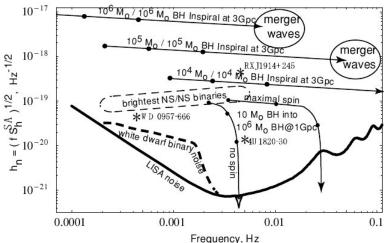
Scientific objectives: GW sources

Massive Black Holes: $10^4 M_{\odot}$ to $10^7 M_{\odot}$

- Formation, growth and merger → history of galaxies formation
- SMBH mergers: ~1 year⁻¹; MBH to form SMBH: ~100 year⁻¹
- System properties (mass, spin, orientation, distance)

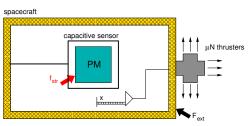
EMRIs: $10M_{\odot}$ BH and 10^6M_{\odot} SMBH


- GR testbed: precision probes of Kerr metric
- All parameters measured from GW signal


- 9 known galactic binaries in the LISA band [verification binaries]
- Mass, distance, orbits
- · History of stars in our galaxy

Too many! ($\sim 10^5$): WDB noise

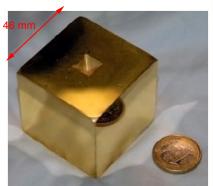
LISA sensitvity



Gravitational Reference Sensor: free-fall

First thing to do is to have the proof masses in free-fall \rightarrow only subjected to inertial forces

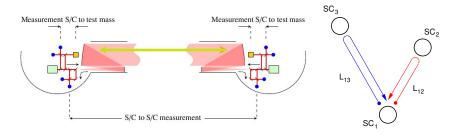
$$S_{a, \text{LISA}}^{1/2}(f) \lesssim 3 \times 10^{-15} \left[1 + \left(\frac{f}{8 \, \text{mHz}} \right)^2 \right] \, \frac{\text{m}}{\text{s}^2} \frac{1}{\text{Hz}^{1/2}}, \quad 0.1 \, \text{mHz} \leq f \leq 1 \, \text{Hz}$$



- $f_{\rm str}$ minimized by design (T, B, μg)
- Fext shielded by the SC
- capactive sensor + DFACS + μ N thrusters keep the SC centered to the PM

- Has to be tested in space
- To be tested by LISA Pathfinder (LPF) in 2014

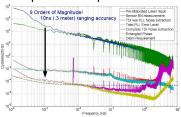
Proof mass and Electrode Housing (LPF)



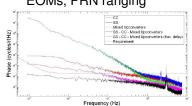
Interferometry

Once we have the PMs in free-fall we have to measure the distance between them at the pico-meter level to detect GW

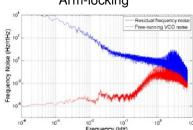
- PM interferometer: PM-SC distance
- Science interferometer: SC-SC distance (Time-delay) interferometry: synthesize a Michelson interferometer by a linear combination of time-shifted signals)



$$S_{\chi}^{1/2}(f) \le 18 \times 10^{-12} \left[1 + \left(\frac{2.8 \,\mathrm{mHz}}{f} \right)^4 \right]^{1/2} \, \frac{\mathrm{m}}{\mathrm{Hz}^{1/2}}$$

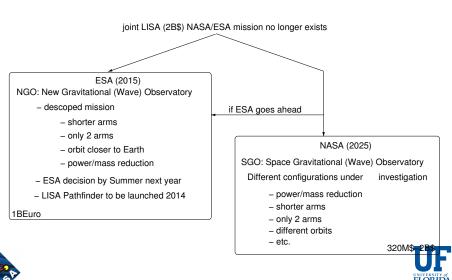


LISA research at UF


TDI: experimental proof of concept

Ranging: Up/Down-Converters, EOMs, PRN ranging

Arm-locking



- Frequency laser stabilization (see Darsa Donelan talk)
- Telescope investigations (see Dan Korytov talk)

LISA status

