Measurement of θ_{13} at Double Chooz

θ₁₃ & v Oscillations
Double Chooz Concept and Detector
Preliminary Results
Conclusions

Brandon White SESAPS Meeting October 20th 2011

\mathbf{H}_{13}

PMNS Matrix Describes the relationship between neutrino • mass and flavor eigenstates.

2

Reactor Anti-Neutrinos

- For reactor experiments the source is electron anti-neutrinos from beta decay of unstable fission products.
- For Double Chooz: Two 4.25GW reactors

 $\sim 2 \ge 10^{21} \text{ v/s}$

• The electron anti-neutrinos are detected with inverse beta decay reactions.

$$\overline{\nu}_e + p = n + e^+$$

Double Chooz

- The Double Chooz concept will build on the previous Chooz experience improving background suppression, systematic and statistical uncertainties
- Two identical detectors will be built, one at the previous Chooz site (1.05km from reactors) and a near detector (~400m from reactors).

Systematic errors	Absolute	Relative
Production σ	1.9~%	-
Reactor power	0.7~%	-
Energy per fission	0.6~%	-
Detector efficiency	$1.5 \ \%$	0.5~%
Number of protons	0.8~%	0.2~%
Total	2.7	0.6

Double Chooz Sensitivity

arXiv:1106.2822v2

Double Chooz - sensitivity, no oscillations

Detector Design

• Reactor electron anti-neutrinos are detected by inverse beta decay reactions inside the target area.

Far Detector Construction

Buffer Vessel Lid and IV PMTs

Inner Detector PMTs and Acrylic vessel

Civil Construction of the Near 7 Lab is ongoing

Preliminary Data

• Stable Data taking at the Far Detector begain April 13, 2011

Now over 100 days of physics data.

~75% physics data efficiency ~10% calibration data

Muon Data

- Muon rates from Inner Veto
- Michel Electrons after tagged stopping Muons

Michel electron timing distribution

Muon Data

• Detector Events following Muons

IBD Candidates by Day

• >4000 Events with background

Calibration Data

- ⁶⁸Ge calibration data in Calibration Guide Tube.

- Other Calibrations inclue:
 - Light injection system
 - Z-axsis Deployments
 - ¹³⁷Cs, ⁶⁰Co, ²⁵²Cf

Conclusion

- Double Chooz Far Detector has been running stable since April of this year.
- The discover potential is promising for far detector data only.
- A "clean" measurement of θ_{13} will be important for long baseline discoveries.
- First results from Double Chooz are coming soon!

Thank You

Measurement of Theta-13

• Reactor anti-neutrino experiments have the opportunity for a "clean" measurement of θ_{13} .

$$P(\overline{\mathbf{v}}_e \to \overline{\mathbf{v}}_e) = 1 - \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{31}^2 \cdot L}{4E}\right) - \cos^4 \theta_{13} \cdot \sin^2 2\theta_{12} \cdot \sin^2 \left(\frac{\Delta m_{21}^2 \cdot L}{4E}\right)$$

• Accelerator neutrino experiments also have the capability of measuring θ_{13} but it is coupled with the CP-violating phase and matter effects.

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &\approx \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\frac{\sin^{2}(\Delta_{31}-aL)}{(\Delta_{31}-aL)^{2}}\Delta_{31}^{2} \\ &+2\sin 2\theta_{13}\sin 2\theta_{23}\sin 2\theta_{12}\cos \theta_{13} \\ &\quad *\frac{\sin(\Delta_{31}-aL)}{(\Delta_{31}-aL)}\Delta_{31}\frac{\sin(aL)}{(aL)}\Delta_{21} \\ &\quad *(\cos \Delta_{32}\cos \delta - \sin \Delta_{32}\sin \delta) \\ &\quad +\cos^{4}\theta_{13}\cos^{2}\theta_{23}\sin^{2}2\theta_{12}\frac{\sin^{2}(aL)}{(aL)^{2}}\Delta_{21}^{2} \end{split}$$

Accelerator Experiments

A measurement of a "large" value for θ_{13} would impact the potential for mass hierarchy and cp violating phase measurements from accelerator neutrino experiments

Double Chooz Sensitivity

Figure 1: Comparison of n- σ regions allowed by the latest (2008) solar and KamLAND data in the $(\delta m^2, \sin^2 \theta_{12})$ plane, for two fixed values of θ_{13} .

• Global analysis combining Solar and Kamland data sugests a nonzero value for theta-13.

•
$$\sin^2 2\theta_{13} \simeq 0.08$$

Position Reconstruction

• IBD Delay event reconstructed position.

IBD Delta T

• Delta T between prompt and delay IBD events.

19

Delay Events

Delayed Event Charge Distribution Events **Double Chooz Preliminary** ·10³ PMT charge sum [arb. units]