Boundary Conflicts and Cluster Coarsening: Waves of Life and Death in the Cyclic Competition of Four Species

Ahmed Roman, Michel Pleimling

Virginia Tech, Blacksburg

Friday, October 21

Examples

• 3 Lizard populations competing cyclically

Examples

- 3 Lizard populations competing cyclically
- 5 grass populations competing in a complicated manner

Examples

- 3 Lizard populations competing cyclically
- 5 grass populations competing in a complicated manner
- 4 species cyclically competing model is a stepping stone in understanding complex food chains of 4 species.

Examples

- 3 Lizard populations competing cyclically
- 5 grass populations competing in a complicated manner
- 4 species cyclically competing model is a stepping stone in understanding complex food chains of 4 species.

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

• Randomly choose a position (i, j) on the lattice

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (*i*, *j*) on the lattice
- Randomly choose one of the following (i, j + 1), (i, j 1), (i + 1, j), (i 1, j)

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (*i*, *j*) on the lattice
- Randomly choose one of the following (i, j + 1), (i, j 1), (i + 1, j), (i 1, j)

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (*i*, *j*) on the lattice
- Randomly choose one of the following (i, j + 1), (i, j 1), (i + 1, j), (i 1, j)

•
$$A + B \xrightarrow{k_A} A + A$$
 else $A + B \xrightarrow{1-k_A} B + A$

< 17 >

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i, j) on the lattice
- Randomly choose one of the following (i, j + 1), (i, j 1), (i + 1, j), (i 1, j)

•
$$A + B \xrightarrow{k_A} A + A$$
 else $A + B \xrightarrow{1-k_A} B + A$
• $B + C \xrightarrow{k_B} B + B$ else $B + C \xrightarrow{1-k_B} C + B$

A D > A A P >

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i, j) on the lattice
- Randomly choose one of the following (i, i + 1), (i, i - 1), (i + 1, i), (i - 1, i)

•
$$A + B \xrightarrow{k_A} A + A$$
 else $A + B \xrightarrow{1-k_A} B + A$
• $B + C \xrightarrow{k_B} B + B$ else $B + C \xrightarrow{1-k_B} C + B$
• $C + D \xrightarrow{k_C} C + C$ else $C + D \xrightarrow{1-k_C} D + C$

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i, j) on the lattice
- Randomly choose one of the following (i, j + 1), (i, j 1), (i + 1, j), (i 1, j)

•
$$A + B \xrightarrow{k_A} A + A$$
 else $A + B \xrightarrow{1-k_A} B + A$
• $B + C \xrightarrow{k_B} B + B$ else $B + C \xrightarrow{1-k_B} C + B$
• $C + D \xrightarrow{k_C} C + C$ else $C + D \xrightarrow{1-k_C} D + C$
• $D + A \xrightarrow{k_D} D + D$ else $D + A \xrightarrow{1-k_D} A + D$

A D > A A P >

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (*i*, *j*) on the lattice
- Randomly choose one of the following (i, j + 1), (i, j 1), (i + 1, j), (i 1, j)

•
$$A + B \xrightarrow{k_A} A + A$$
 else $A + B \xrightarrow{1-k_A} B + A$
• $B + C \xrightarrow{k_B} B + B$ else $B + C \xrightarrow{1-k_B} C + B$
• $C + D \xrightarrow{k_C} C + C$ else $C + D \xrightarrow{1-k_C} D + C$
• $D + A \xrightarrow{k_D} D + D$ else $D + A \xrightarrow{1-k_D} A + D$
• $A + C \xrightarrow{\mu_{AC}} C + A$ and $B + D \xrightarrow{\mu_{BD}} D + B$

Figure: Periodic Boundary

ም.

Figure: Periodic Boundary

Definition

A Monte-Carlo time step is L^2 reactions where L is the length of the square lattice.

Figure: Periodic Boundary

Definition

A Monte-Carlo time step is L^2 reactions where L is the length of the square lattice.

Definition

The sum of the populations of the species is invariant and is equal to L^2 since the occupation number is 1 element per lattice site.

Roman A., Pleimling M. (Virginia Tech, Blac Condensed Matter Physics Group

Three Species and Pattern Formation

Figure: Pattern Formation in 3 Species Model [E. Frey Group]

Remark

• Alliance Formation (A, C) vs. (B, D)

Remark

- Alliance Formation (A, C) vs. (B, D)
- Algebraic Cluster Growth $\sim t^{1/z}$ where $z \in (.44, .47)$

Remark

- Alliance Formation (A, C) vs. (B, D)
- Algebraic Cluster Growth $\sim t^{1/z}$ where $z \in (.44, .47)$
- Finite-Size effects are observed when $t^{1/z} \sim L^2$

Remark

- Alliance Formation (A, C) vs. (B, D)
- Algebraic Cluster Growth $\sim t^{1/z}$ where $z \in (.44, .47)$
- Finite-Size effects are observed when $t^{1/z} \sim L^2$
- Wave Fronts and Spirals

Remark

- Alliance Formation (A, C) vs. (B, D)
- Algebraic Cluster Growth $\sim t^{1/z}$ where $z \in (.44, .47)$
- Finite-Size effects are observed when $t^{1/z} \sim L^2$
- Wave Fronts and Spirals

Figure: $t \sim 100$

Remark

- Alliance Formation (A, C) vs. (B, D)
- Algebraic Cluster Growth $\sim t^{1/z}$ where $z \in (.44, .47)$
- Finite-Size effects are observed when $t^{1/z} \sim L^2$
- Wave Fronts and Spirals

Figure: $t \sim 500$

Figure: $t \sim 100$

$$\lambda_t^A(i,j) = egin{cases} 1 & ext{if (i,j) contains A at time t} \ -1 & Otherwise. \end{cases}$$

$$\gamma_t^{\mathcal{A}}(i,j,r) = \frac{1}{4}\lambda_t^{\mathcal{A}}(i,j)[\lambda_t^{\mathcal{A}}(i+r,j) + \lambda_t^{\mathcal{A}}(i-r,j) + \lambda_t^{\mathcal{A}}(i,j+r) + \lambda_t^{\mathcal{A}}(i,j-r)]$$

we similarly define $\gamma_t^{\xi}(i, j, r)$ and $\lambda_t^{\xi}(i, j)$ where $\xi = B, C$ or D. Then the space-time correlation function is defined as

$$C_t(r) = \sum_{r=1}^{\frac{L}{4}} \sum_{i=1}^{L} \sum_{j=1}^{L} [\gamma_t^A(i,j,r) + \gamma_t^B(i,j,r) + \gamma_t^C(i,j,r) + \gamma_t^D(i,j,r)]$$

Measurement

We plot $\frac{1}{r}C_0(0) = \text{constant}$ where $r \in \mathbb{R}$ chosen appropriately as well as $C_t(r)$ as function of time, then we plot the intersection of the two traces as a function of time yielding the length scale $L \sim t^{1/z}$ as a function of time.

Problem

Are there "better" geometries to observe the length scale?

Measurement

We plot $\frac{1}{r}C_0(0) = \text{constant}$ where $r \in \mathbb{R}$ chosen appropriately as well as $C_t(r)$ as function of time, then we plot the intersection of the two traces as a function of time yielding the length scale $L \sim t^{1/z}$ as a function of time.

Problem

Are there "better" geometries to observe the length scale?

Correlation Function and Geometry

Measurement

We plot $\frac{1}{r}C_0(0) = \text{constant}$ where $r \in \mathbb{R}$ chosen appropriately as well as $C_t(r)$ as function of time, then we plot the intersection of the two traces as a function of time yielding the length scale $L \sim t^{1/z}$ as a function of time.

Problem

Are there "better" geometries to observe the length scale?

• Study the square width of the interface as a function of time. (Work In Progress.)

э

- Study the square width of the interface as a function of time. (Work In Progress.)
- Can we observe patterns in the behavior on the boundary of clusters as a function of thickness?

- Study the square width of the interface as a function of time. (Work In Progress.)
- Can we observe patterns in the behavior on the boundary of clusters as a function of thickness?
- How can we study the physics of the various waves in this system?

- Study the square width of the interface as a function of time. (Work In Progress.)
- Can we observe patterns in the behavior on the boundary of clusters as a function of thickness?
- How can we study the physics of the various waves in this system?
- Can we observe periodic oscillations in the population sizes as a function of time for the symmetric reaction rates like those observed in the zero dimensional model?

- Study the square width of the interface as a function of time. (Work In Progress.)
- Can we observe patterns in the behavior on the boundary of clusters as a function of thickness?
- How can we study the physics of the various waves in this system?
- Can we observe periodic oscillations in the population sizes as a function of time for the symmetric reaction rates like those observed in the zero dimensional model?
- Which confined geometry provides the largest time regime where the dynamical exponent can be observed free of early time effects or finite-size effects? (Work In Progress.)

Questions

Do you have a question? Ask Away...

э

æ