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Motivation

Examples

3 Lizard populations competing cyclically

5 grass populations competing in a complicated manner

4 species cyclically competing model is a stepping stone in
understanding complex food chains of 4 species.
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Model

Definition

On a two dimensional square lattice with periodic boundary conditions and
an occupation number of 1 per lattice site we randomly distribute the four
species A,B,C and D which compete in the following manner:

Randomly choose a position (i , j) on the lattice

Randomly choose one of the following
(i , j + 1), (i , j − 1), (i + 1, j), (i − 1, j)

A + B
kA−→ A + A else A + B

1−kA−−−→ B + A

B + C
kB−→ B + B else B + C

1−kB−−−→ C + B

C + D
kC−→ C + C else C + D

1−kC−−−→ D + C

D + A
kD−→ D + D else D + A

1−kD−−−→ A + D

A + C
µAC−−→ C + A and B + D

µBD−−→ D + B
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Model Cont’d

Figure: Periodic Boundary

Definition

A Monte-Carlo time step is L2 reactions where L is the length of the
square lattice.

Definition

The sum of the populations of the species is invariant and is equal to L2

since the occupation number is 1 element per lattice site.
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Three Species and Pattern Formation

Figure: Pattern Formation in 3 Species Model [E. Frey Group]
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Four Species and Cluster Coarsening

Remark

Alliance Formation (A,C ) vs. (B,D)

Algebraic Cluster Growth ∼ t1/z where z ∈ (.44, .47)

Finite-Size effects are observed when t1/z ∼ L2

Wave Fronts and Spirals

Figure: t ∼ 100 Figure: t ∼ 500
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Space Time Correlation function

Definition

λAt (i , j) =

{
1 if (i,j) contains A at time t

−1 Otherwise.

γAt (i , j , r) =
1

4
λAt (i , j)[λAt (i + r , j) +λAt (i − r , j) +λAt (i , j + r) +λAt (i , j − r)]

we similarly define γξt (i , j , r) and λξt (i , j) where ξ = B,C or D. Then the
space-time correlation function is defined as

Ct(r) =

L
4∑

r=1

L∑
i=1

L∑
j=1

[γAt (i , j , r) + γBt (i , j , r) + γCt (i , j , r) + γDt (i , j , r)]

Roman A., Pleimling M. (Virginia Tech, Blacksburg)Condensed Matter Physics Group Friday, October 21 7 / 10



Correlation Function and Geometry

Measurement

We plot 1
r C0(0) = constant where r ∈ R chosen appropriately as well as

Ct(r) as function of time, then we plot the intersection of the two traces as
a function of time yielding the length scale L ∼ t1/z as a function of time.

Problem

Are there ”better” geometries to observe the length scale?
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Future Work

Problem

Study the square width of the interface as a function of time. (Work
In Progress.)

Can we observe patterns in the behavior on the boundary of clusters
as a function of thickness?

How can we study the physics of the various waves in this system?

Can we observe periodic oscillations in the population sizes as a
function of time for the symmetric reaction rates like those observed
in the zero dimensional model?

Which confined geometry provides the largest time regime where the
dynamical exponent can be observed free of early time effects or
finite-size effects? (Work In Progress.)

Roman A., Pleimling M. (Virginia Tech, Blacksburg)Condensed Matter Physics Group Friday, October 21 9 / 10



Future Work

Problem

Study the square width of the interface as a function of time. (Work
In Progress.)

Can we observe patterns in the behavior on the boundary of clusters
as a function of thickness?

How can we study the physics of the various waves in this system?

Can we observe periodic oscillations in the population sizes as a
function of time for the symmetric reaction rates like those observed
in the zero dimensional model?

Which confined geometry provides the largest time regime where the
dynamical exponent can be observed free of early time effects or
finite-size effects? (Work In Progress.)

Roman A., Pleimling M. (Virginia Tech, Blacksburg)Condensed Matter Physics Group Friday, October 21 9 / 10



Future Work

Problem

Study the square width of the interface as a function of time. (Work
In Progress.)

Can we observe patterns in the behavior on the boundary of clusters
as a function of thickness?

How can we study the physics of the various waves in this system?

Can we observe periodic oscillations in the population sizes as a
function of time for the symmetric reaction rates like those observed
in the zero dimensional model?

Which confined geometry provides the largest time regime where the
dynamical exponent can be observed free of early time effects or
finite-size effects? (Work In Progress.)

Roman A., Pleimling M. (Virginia Tech, Blacksburg)Condensed Matter Physics Group Friday, October 21 9 / 10



Future Work

Problem

Study the square width of the interface as a function of time. (Work
In Progress.)

Can we observe patterns in the behavior on the boundary of clusters
as a function of thickness?

How can we study the physics of the various waves in this system?

Can we observe periodic oscillations in the population sizes as a
function of time for the symmetric reaction rates like those observed
in the zero dimensional model?

Which confined geometry provides the largest time regime where the
dynamical exponent can be observed free of early time effects or
finite-size effects? (Work In Progress.)

Roman A., Pleimling M. (Virginia Tech, Blacksburg)Condensed Matter Physics Group Friday, October 21 9 / 10



Future Work

Problem

Study the square width of the interface as a function of time. (Work
In Progress.)

Can we observe patterns in the behavior on the boundary of clusters
as a function of thickness?

How can we study the physics of the various waves in this system?

Can we observe periodic oscillations in the population sizes as a
function of time for the symmetric reaction rates like those observed
in the zero dimensional model?

Which confined geometry provides the largest time regime where the
dynamical exponent can be observed free of early time effects or
finite-size effects? (Work In Progress.)

Roman A., Pleimling M. (Virginia Tech, Blacksburg)Condensed Matter Physics Group Friday, October 21 9 / 10



Questions

Questions

Do you have a question? Ask Away...
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