Boundary Conflicts and Cluster Coarsening: Waves of Life and Death in the Cyclic Competition of Four Species

Ahmed Roman, Michel Pleimling

Virginia Tech, Blacksburg

Friday, October 21
Motivation

Examples

- 3 Lizard populations competing cyclically
Motivation

Examples

- 3 Lizard populations competing cyclically
- 5 grass populations competing in a complicated manner
Motivation

Examples

- 3 Lizard populations competing cyclically
- 5 grass populations competing in a complicated manner
- 4 species cyclically competing model is a stepping stone in understanding complex food chains of 4 species.
Motivation

Examples

- 3 Lizard populations competing cyclically
- 5 grass populations competing in a complicated manner
- 4 species cyclically competing model is a stepping stone in understanding complex food chains of 4 species.
Model

Definition

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- $A + B \xrightarrow{k} A + A$
- $A + B \xrightarrow{1-k} B + A$
- $B + C \xrightarrow{k} B + B$
- $B + C \xrightarrow{1-k} C + B$
- $C + D \xrightarrow{k} C + C$
- $C + D \xrightarrow{1-k} D + C$
- $D + A \xrightarrow{k} D + D$
- $D + A \xrightarrow{1-k} A + D$
- $A + C \xrightarrow{\mu} C + A$
- $B + D \xrightarrow{\mu} D + B$
Model

Definition

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species \(A, B, C \) and \(D \) which compete in the following manner:

- Randomly choose a position \((i, j)\) on the lattice

\[
\begin{align*}
A + B & \overset{k_A}{\longrightarrow} A + A \\
B + C & \overset{k_B}{\longrightarrow} B + B \\
C + D & \overset{k_C}{\longrightarrow} C + C \\
D + A & \overset{k_D}{\longrightarrow} D + D \\
A + C & \overset{\mu}{\longrightarrow} C + A \\
B + D & \overset{\mu}{\longrightarrow} D + B
\end{align*}
\]
Model

Definition

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i, j) on the lattice
- Randomly choose one of the following $(i, j + 1), (i, j - 1), (i + 1, j), (i - 1, j)$
On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i, j) on the lattice
- Randomly choose one of the following $(i, j + 1), (i, j - 1), (i + 1, j), (i - 1, j)$
Model

Definition

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i, j) on the lattice
- Randomly choose one of the following
 $(i, j + 1), (i, j - 1), (i + 1, j), (i - 1, j)$
- $A + B \xrightarrow{k_A} A + A$ else $A + B \xrightarrow{1-k_A} B + A$
Model

Definition

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i, j) on the lattice
- Randomly choose one of the following $(i, j + 1), (i, j - 1), (i + 1, j), (i - 1, j)$

- $A + B \xrightarrow{k_A} A + A$ else $A + B \xrightarrow{1-k_A} B + A$
- $B + C \xrightarrow{k_B} B + B$ else $B + C \xrightarrow{1-k_B} C + B$
Model

Definition

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i,j) on the lattice
- Randomly choose one of the following $(i,j+1), (i,j-1), (i+1,j), (i-1,j)$

- $A + B \xrightarrow{k_A} A + A$ else $A + B \xrightarrow{1-k_A} B + A$
- $B + C \xrightarrow{k_B} B + B$ else $B + C \xrightarrow{1-k_B} C + B$
- $C + D \xrightarrow{k_C} C + C$ else $C + D \xrightarrow{1-k_C} D + C$

Roman A., Pleimling M. (Virginia Tech, Blacksburg) Condensed Matter Physics Group Friday, October 21 3 / 10
Model

Definition

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position \((i, j)\) on the lattice
- Randomly choose one of the following \((i, j + 1), (i, j - 1), (i + 1, j), (i - 1, j)\)

- \(A + B \xrightarrow{k_A} A + A\) else \(A + B \xrightarrow{1-k_A} B + A\)
- \(B + C \xrightarrow{k_B} B + B\) else \(B + C \xrightarrow{1-k_B} C + B\)
- \(C + D \xrightarrow{k_C} C + C\) else \(C + D \xrightarrow{1-k_C} D + C\)
- \(D + A \xrightarrow{k_D} D + D\) else \(D + A \xrightarrow{1-k_D} A + D\)

\(\mu A + C \xrightarrow{\mu} C + A\) and \(B + D \xrightarrow{\mu} D + B\)
Model

Definition

On a two dimensional square lattice with periodic boundary conditions and an occupation number of 1 per lattice site we randomly distribute the four species A, B, C and D which compete in the following manner:

- Randomly choose a position (i, j) on the lattice
- Randomly choose one of the following $(i, j + 1), (i, j - 1), (i + 1, j), (i - 1, j)$

- $A + B \xrightarrow{k_A} A + A$ else $A + B \xrightarrow{1-k_A} B + A$
- $B + C \xrightarrow{k_B} B + B$ else $B + C \xrightarrow{1-k_B} C + B$
- $C + D \xrightarrow{k_C} C + C$ else $C + D \xrightarrow{1-k_C} D + C$
- $D + A \xrightarrow{k_D} D + D$ else $D + A \xrightarrow{1-k_D} A + D$
- $A + C \xrightarrow{\mu_{AC}} C + A$ and $B + D \xrightarrow{\mu_{BD}} D + B$
Model Cont’d

Figure: Periodic Boundary
Figure: Periodic Boundary

Definition

A Monte-Carlo time step is L^2 reactions where L is the length of the square lattice.
Definition

A Monte-Carlo time step is L^2 reactions where L is the length of the square lattice.

Definition

The sum of the populations of the species is invariant and is equal to L^2 since the occupation number is 1 element per lattice site.
Three Species and Pattern Formation

Figure: Pattern Formation in 3 Species Model [E. Frey Group]
Remark

- Alliance Formation \((A, C)\) vs. \((B, D)\)
Remark

- Alliance Formation \((A, C)\) vs. \((B, D)\)
- Algebraic Cluster Growth \(\sim t^{1/z}\) where \(z \in (0.44, 0.47)\)
Remark

- Alliance Formation \((A, C)\) vs. \((B, D)\)
- Algebraic Cluster Growth \(\sim t^{1/z}\) where \(z \in (0.44, 0.47)\)
- Finite-Size effects are observed when \(t^{1/z} \sim L^2\)
Remark

- Alliance Formation \((A, C)\) vs. \((B, D)\)
- Algebraic Cluster Growth \(\sim t^{1/z}\) where \(z \in (0.44, 0.47)\)
- Finite-Size effects are observed when \(t^{1/z} \sim L^2\)
- Wave Fronts and Spirals
Remark

- Alliance Formation (A, C) vs. (B, D)
- Algebraic Cluster Growth $\sim t^{1/z}$ where $z \in (.44, .47)$
- Finite-Size effects are observed when $t^{1/z} \sim L^2$
- Wave Fronts and Spirals

Figure: $t \sim 100$
Four Species and Cluster Coarsening

Remark

- Alliance Formation \((A, C)\) vs. \((B, D)\)
- Algebraic Cluster Growth \(\sim t^{1/z}\) where \(z \in (0.44, 0.47)\)
- Finite-Size effects are observed when \(t^{1/z} \sim L^2\)
- Wave Fronts and Spirals

Figure: \(t \sim 100\)

Figure: \(t \sim 500\)
Space Time Correlation function

Definition

\[
\lambda^A_t(i, j) = \begin{cases}
1 & \text{if } (i, j) \text{ contains } A \text{ at time } t \\
-1 & \text{Otherwise.}
\end{cases}
\]

\[
\gamma^A_t(i, j, r) = \frac{1}{4} \lambda^A_t(i, j)[\lambda^A_t(i + r, j) + \lambda^A_t(i - r, j) + \lambda^A_t(i, j + r) + \lambda^A_t(i, j - r)]
\]

we similarly define \(\gamma^\xi_t(i, j, r)\) and \(\lambda^\xi_t(i, j)\) where \(\xi = B, C \text{ or } D\). Then the space-time correlation function is defined as

\[
C_t(r) = \frac{L}{4} \sum_{r=1}^{L} \sum_{i=1}^{L} \sum_{j=1}^{L} [\gamma^A_t(i, j, r) + \gamma^B_t(i, j, r) + \gamma^C_t(i, j, r) + \gamma^D_t(i, j, r)]
\]
Measurement

We plot \(\frac{1}{r} C_0(0) = \text{constant} \) where \(r \in \mathbb{R} \) chosen appropriately as well as \(C_t(r) \) as function of time, then we plot the intersection of the two traces as a function of time yielding the length scale \(L \sim t^{1/z} \) as a function of time.

Problem

Are there "better" geometries to observe the length scale?
Correlation Function and Geometry

Measurement

We plot $\frac{1}{r} C_0(0) = \text{constant}$ where $r \in \mathbb{R}$ chosen appropriately as well as $C_t(r)$ as function of time, then we plot the intersection of the two traces as a function of time yielding the length scale $L \sim t^{1/z}$ as a function of time.

Problem

Are there "better" geometries to observe the length scale?
We plot $\frac{1}{r} C_0(0) = \text{constant}$ where $r \in \mathbb{R}$ chosen appropriately as well as $C_t(r)$ as function of time, then we plot the intersection of the two traces as a function of time yielding the length scale $L \sim t^{1/z}$ as a function of time.

Problem

Are there "better" geometries to observe the length scale?
Problem

- Study the square width of the interface as a function of time. (Work In Progress.)
Future Work

Problem

- **Study the square width of the interface as a function of time.** (Work In Progress.)
- **Can we observe patterns in the behavior on the boundary of clusters as a function of thickness?**
Future Work

Problem

- *Study the square width of the interface as a function of time. (Work In Progress.)*
- *Can we observe patterns in the behavior on the boundary of clusters as a function of thickness?*
- *How can we study the physics of the various waves in this system?*
Future Work

Problem

- **Study the square width of the interface as a function of time.** (Work In Progress.)
- Can we observe patterns in the behavior on the boundary of clusters as a function of thickness?
- How can we study the physics of the various waves in this system?
- Can we observe periodic oscillations in the population sizes as a function of time for the symmetric reaction rates like those observed in the zero dimensional model?

Roman A., Pleimling M. (Virginia Tech, Blacksburg) Condensed Matter Physics Group
Future Work

Problem

- Study the square width of the interface as a function of time. (Work In Progress.)
- Can we observe patterns in the behavior on the boundary of clusters as a function of thickness?
- How can we study the physics of the various waves in this system?
- Can we observe periodic oscillations in the population sizes as a function of time for the symmetric reaction rates like those observed in the zero dimensional model?
- Which confined geometry provides the largest time regime where the dynamical exponent can be observed free of early time effects or finite-size effects? (Work In Progress.)
Questions

Do you have a question? Ask Away…