Inductive Critical Currents in Nb/Mo bilayers

P.R. Broussard, J. Veldhorst

Covenant College, Lookout Mountain, GA 30750

SESAPS Fall 2011 Presentation

Acknowledgments

- ▶ NSF Grant DMR-0820025 for the purchase of equipment
- Covenant College for support of student work
- Mr. Tim Ahrenholz for making the Helmholtz magnet
- Mr. Steve Lewin for fabricating the coils
- Georgia Tech for thickness measurements
- ▶ Prof. C.B. Eom (Univ of Wisconsin-Madison) for XRD work

Talk Outline

- Introduction
- Sample Preparation
- Sample Characterization
- ► Inductive Critical Current Technique
- Transition Temperatures and Critical Currents
- Critical Currents in Low Magnetic Field
- Conclusions

Introduction

lacktriangle Nb/Mo bilayers with varying $d_{
m Nb}$ and $d_{
m Mo}$

Introduction

- lacktriangle Nb/Mo bilayers with varying $d_{
 m Nb}$ and $d_{
 m Mo}$
- ► Film production and characterization shown in poster by J. Veldhorst (LA 21)

Introduction

- lacktriangle Nb/Mo bilayers with varying $d_{
 m Nb}$ and $d_{
 m Mo}$
- Film production and characterization shown in poster by J.
 Veldhorst (LA 21)
- Here we look at the inductive critical currents.

Film Growth

Nb/Mo bilayers grown by magnetron sputtering

Our system

ightharpoonup $d_{
m Nb}=$ 30 nm, $d_{
m Mo}$ varied from 10-50 nm

Our system

- ▶ $d_{\rm Nb}$ =30 nm, $d_{\rm Mo}$ varied from 10-50 nm
- ▶ d_{Mo} =20 nm, d_{Nb} varied from 30-90 nm

X-ray Characterization

Layers show close packed growth

Based on work by Claassen et al., RSI 62, 996(1991)

ample mounted on OFHC platform

Cryo-cooled

Thermometer: Si diode

amometer. Si diode

Definition of Critical Current

Define via linear offset (Claassen, 1991)

Extraction of Results

▶ Conversion of coil current to critical current ($K = 7 \times 10^4$ m⁻¹.

Extraction of Results

- ► Conversion of coil current to critical current ($K = 7 \times 10^4$ m⁻¹.
- \triangleright Fitting J_c vs. T indicates Ginzburg-Landau behavior

Temperature Dependence

Extraction of Results

- ► Conversion of coil current to critical current ($K = 7 \times 10^4$ m⁻¹).
- ightharpoonup Fitting J_c vs. T indicates Ginzburg-Landau behavior
- ▶ Fitting with $J_c(0)(1-t)^{3/2}$ and extract both T_c and $J_c(0)$

Extraction of Results

- ► Conversion of coil current to critical current ($K = 7 \times 10^4$ m⁻¹).
- ightharpoonup Fitting J_c vs. T indicates Ginzburg-Landau behavior
- ▶ Fitting with $J_c(0)(1-t)^{3/2}$ and extract both T_c and $J_c(0)$
- lacktriangle Look at results for varying both $d_{
 m Nb}$ and $d_{
 m Mo}$

Dependence on d_{Nb}

Dependence on $d_{ m Mo}$

Variation in $J_c(0)$?

Possibly due to variations in resistivity?

Variation in $J_c(0)$?

- Possibly due to variations in resistivity?
- ▶ $J_c(0) \propto (\rho_0)^{-1/2}$ (Geers *et al.* Phys. Rev. B **64**, 094506 (2001)

Field Dependence

Weak link dependence?

▶ Strong dependence of J_c on resistivity

- ▶ Strong dependence of J_c on resistivity
- Issues with film growth

- ▶ Strong dependence of J_c on resistivity
- Issues with film growth
- ► Field dependence looks like weak link

- ▶ Strong dependence of J_c on resistivity
- Issues with film growth
- ► Field dependence looks like weak link
- ► Future work: Film quality