Neutron emission asymmetries from linearly polarized γ rays on $^{\it nat}{\rm Cd},~^{\it nat}{\rm Sn},$ and $^{181}{\rm Ta}$

Clarke Smith¹, Gerald Feldman¹, and the HI γS Collaboration²

¹George Washington University

²Triangle Universities Nuclear Laboratory (TUNL)

High Intensity $\gamma\text{-}\mathrm{ray}$ Source at TUNL

- HIγS produces γ rays by Compton backscattering free-electron-laser photons from stored electrons
 - intense and nearly monochromatic
 - circularly or linearly polarized
- neutron emission induced by incident 10-20 MeV photons
 - via (γ, n) , $(\gamma, 2n)$, and (γ, f)
 - in both fissile and nonfissile targets

Photofission studies at $HI\gamma S$

- using linearly polarized incident γ rays, neutron emission is azimuthally asymmetric
- asymmetry depends on:
 - emitted neutron energies
 - nuclear species of the target
- can possibly be exploited for applications involving isotopic identification

Neutron detection

- outgoing neutrons detected by 18 liquid-scintillator neutron detectors
 - $\begin{array}{l} \bullet \quad \mbox{mounted at:} \\ \phi_{lab} = 0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ} \\ \theta_{lab} = 55^{\circ}, 72^{\circ}, 90^{\circ}, 107^{\circ}, 125^{\circ}, 142^{\circ} \end{array}$
- targets positioned in center of array, tilted in θ_{lab} and ϕ_{lab} (each at 45°) to double effective thickness
- time of flight measured over 58 cm flight path

asymmetrical production of neutrons allows construction of I_{\parallel}/I_{\perp} , the ratio of yields parallel to yields perpendicular to the plane of γ -ray polarization

$$rac{I_{\parallel}}{I_{\perp}} = rac{N_{left} + N_{right}}{N_{top} + N_{bottom}}$$

► *N* is the number of neutron counts per detector in an energy bin of width $\Delta E = 0.5$ MeV

• generate plots of I_{\parallel}/I_{\perp} as a function of outgoing neutron energy E_n • potentially useful for isotopic identification

イロト 不得下 イヨト イヨト 三日

	Mar. 2009	Feb. 2010	Jul. 2010	Jul. 2011
fissile	23811	23511 23811	239 Pu 232 Th	
targets	0	0, 0		-
nonfissile targets	^{nat} Pb, ²⁰⁹ Bi, ^{nat} Fe, ^{nat} Cu, ^{nat} Cr	^{nat} Pb	⁹ Be, ^{nat} Cd, ^{nat} Sn, ¹⁸¹ Ta	^{nat} La, ^{nat} Hg, ^{nat} Dy

◆□> ◆圖> ◆臣> ◆臣> □臣

July 2010 ^{nat}Cd, ^{nat}Sn, and ¹⁸¹Ta runs

- γ rays produced by HI γ S were incident on ^{*nat*}Cd, ^{*nat*}Sn, ¹⁸¹Ta
- data were taken at incident photon energies $E_{\gamma} = 11.0 15.5$ MeV
- for nonfissile targets with high (γ, 2n) thresholds, measured asymmetries result unambiguously from (γ, n)
 e.g. ^{nat}Cd. ^{nat}Sn. ¹⁸¹Ta
- targets chosen for low (γ, n) thresholds and high expected I_{\parallel}/I_{\perp} values

E_{γ} (MeV)	11.0	12.0	13.0	14.0	15.0	15.5
^{nat} Cd	-	-	Х	Х	Х	Х
^{nat} Sn	-	-	Х	-	Х	Х
¹⁸¹ Ta	Х	Х	Х	Х	-	Х

Data analysis with ROOT

- data collected includes:
 - pulse height
 - time-of-flight (ToF)
 - pulse-shape discrimination (PSD)
- neutrons distinguished from Compton-scattered photons by 2D cuts on ToF vs. PSD plots
- **2** E_n calculated using ToF techniques:

$$E_n=rac{1}{2}m_n\left(rac{\Delta x}{\Delta t}
ight)^2,$$
 where $\Delta x=0.58$ m

- (a) additional data taken using 15.5 MeV circularly polarized γ rays used to check for systematic differences in detector efficiency

ToF projection

イロト イポト イヨト イヨト

э

3.5 3

Neutron asymmetry plots for various E_{γ} ($\theta_{lab} = 90^{\circ}$)

Asymmetric neutron emissions

Neutron asymmetry plots for various θ_{lab} ($E_{\gamma} = 15.5$ MeV)

Summary

- linearly polarized γ rays were incident on ^{nat}Cd, ^{nat}Sn, and ¹⁸¹Ta
- we observed an azimuthal asymmetry in neutron emission that was relatively distinct for ^{nat}Cd, ^{nat}Sn, and ¹⁸¹Ta
- asymmetries also distinct from previously studied targets at ${\rm HI}\gamma{\rm S}$

future work

- determine characteristic I_{\parallel}/I_{\perp} vs. E_n curves for additional fissile and nonfissile targets
- collect data for targets with multiple isotopic components to gauge ability to determine isotopic composition