Impact of recent laboratory N_2 data to our understanding of thermospheric NO

J. Yonker¹ C.Lin² K. Venkataramani² S.M. Bailey ²

¹Dept. of Physics/Space@VT Virginia Tech

²Dept. of Electrical and Computer Engineering/Space@VT Virginia Tech

> SESAPS October 20, 2011

Overview

- Reaction of the first excited state of atomic nitrogen, N(²D), with O₂ is the principal chemical source of NO throughout thermosphere.
- Reaction of ground state atomic nitrogen, N(⁴S), with NO is the principal NO chemical sink throughout thermosphere.
- Laboratory evidence has appeared for NO product from N₂(A) +O reaction. 1
- Include N₂(A) in photochemical model to evaluate claimed thermospheric NO increase of 200-300%.²
- How do new N₂ electron-impact excitation cross-sections ³ affect determination of N₂(A) production?

¹Thomas J., Kaufman F., J.Phys.Chem., 1996

²Campbell, L. et al. *J.Geophys.Res.*, **2007**

³Johnson, P. et al. J.Phys.B, 2005; Malone, C. et al. J.Phys.B, 2009

Ionosphere/Thermosphere Overview

$N(^{2}D)$ and $N(^{4}S)$ Production

N_2^+ +O: Principal Source of NO⁺, N(²D), and NO

lonized N₂ leads to N(²D) N₂⁺ Loss Frequency (s⁻¹) 1.0 100.0 1000.0 0.1 250 $N_2 + e^* \rightarrow N_2^+ + 2e$ t Loss Free $N_2^+ + O \rightarrow NO^+ + N(^2D)$ N*+0 200 $NO^+ + e \rightarrow N(^2D) + O$ Altitude (km) $N_2 + e^* \rightarrow 2N(^2D)$ 150 which leads to NO: 100 0.1 1.0 10.0 100.0 1000.0 10000.0 N⁺₂ Production Rate (cm⁻³s⁻¹) $N(^2D) + O_2 \rightarrow NO + O.$

N(²D)+O₂ Rate

Excited N2 leads to NON2 Dissociation:
Branching Ratio N(2D) \approx .5N2 + e* \rightarrow N2(A) + eBranching Ratio N(2D) \approx .5N2(A) + O \rightarrow NO + N(2D)N2 + e* \rightarrow N(4S) + N(2D) + eN2(A) + O \rightarrow NO + N(2D)N(4S) + NO \rightarrow N2 + ON(2D) + O2 \rightarrow NO + ON(4S) + NO \rightarrow N2 + ON(2D) + O2 \rightarrow NO + ON(2D) + O2 \rightarrow NO + ON(2D) + O2 + e* \rightarrow 2NO + eN(2D) + O2 \rightarrow NO + O

⁴Thomas, J. & F. Kaufman, *J.Phys.Chem.*, **1996**

N₂ Electronic States (courtesy D. Sentman, UAF)

Outline of NOx 1D Photochemical Model⁷

- Inputs: neutral atmosphere (N₂,O₂, O) and temperature from NRLMSIS⁵; daily F10.7 scaled EUV solar spectrum; photoionization, photoabsorption, electron-impact cross sections and photoelectron spectrum from GLOW⁶.
- Solves continuity equation. 12 species: NO, N(⁴S), N(²D), N(²P), N₂(A), NO⁺, N₂⁺, N⁺, O₂⁺, O⁺(⁴S), O⁺(²D), e⁻.
- Vertical diffusion included only for NO and N(⁴S): BC at 40 km (photochemical equilibrium) and 250 km (diffusive equilibrium).
- Δz=2 km, Δt=5 min. Solar inputs and neutral atmosphere updated every hour.

⁵Picone, J et al., J.Geophys.Res, 2002
⁶Solomon, S. et al. J.Geophys.Res., 1988
⁷Bailey, S. et al. J.Geophys.Res., 2002

Comparison of Model with SNOE NO

New Electron Impact Excitation Cross Sections⁸ 9

Net N₂(A) cross section= $\sigma_{eff}(A) = \sigma(A, B, W) + \sigma(B') + \sigma(C)$. For 12 eV photoelectrons:

- $\sigma(A,B,W)$ lower by about 30%.
- $\sigma(B')$ relatively unimportant.
- $\sigma(C)$ lower by about 50%.
- $\sigma(a,a',w)$ lower by a factor of 3.

⁸Johnson, P. et al. *J.Phys.B*, **2005** ⁹Malone, C. et al. *J.Phys.B*, **2009** Full two-stream GLOW calculation¹⁰ necessary in F-region. In mid-latitude E-region, equilibrium can be assumed and the local photoelectron flux, ϕ , is given by:

$$\phi(E) = \frac{P}{L} = \frac{P_{direct}(E) + P_{cascade}(E', E) + P_{secondary}(E', E)}{L(E, E'')}$$

- P_{direct}=direct photoionization (photoelectric effect).
- P_{cascade}=collisional energy loss from higher energy photoelectrons (E+IP>E'>E).
- P_{secondary}=photoelectron ionization (E'>E+IP).
- L=collisional energy loss to lower energy photoelectrons (E>E").

¹⁰Bailey, S.M., C.A. Barth, S.C. Solomon, *JGR*, **107**, 2002

Effect on $N_2(A)$ Production at 150 km

 $P_A(E) = [N_2]\phi(E)\sigma_{eff}(E)\Delta E$

Competition Among Channels: Normalized Loss, η

 $P_A = P_{pe} \cdot \eta(A)$

Conclusions

- N(²D) production from ion-neutral chemistry responsible for NO peak at 110 km.
- NO appears well-modelled but large uncertainties still exist.
- Temperature dependence and branching ratios for key rates need further laboratory investigation.
- $N_2(A)$ is an important (30-70%) contributor to NO.
- Reduction of electron impact N₂ excitation cross sections by $\approx 40\%$ has little effect on N₂(A) production rates because photoelectron flux increased by corresponding amount.

Deposition of Solar Irradiance (lasp.colorado.edu)

$$\tau(\lambda, z) = \sum_{i=N_2, O_2, O} \int_z^\infty n_i(z) \sigma(\lambda) dz$$

SDO/EVE Solar Spectrum

Solar Irradiance Variability (courtesy of Judith Lean, NRL)

Correlation of F10.7 with Measured X-ray Irradiance¹¹

¹¹Bailey et al, Advances in Space Research, 2005

Correlation of Measured NO with Measured F10.7

EUV Reference Spectrum (lasp.colorado.edu)

Energy Loss Cross Sections

Energy Loss Cross Sections

Energy Loss Rates

24 / 24