MINOS AND NOVA

Patricia Vahle, College of William and Mary

The NuMI Long-baseline Experiments

Two detectors mitigate systematic effects
 beam flux mismodeling
 neutrino interaction uncertainties

Physics Goals

3

Physics Goals

4

	Measure V_{μ} disappearance
	as a function of energy
	$\Box \Delta m_{32}^2 \text{ and } \sin^2(2\theta_{23})$
2 32	test oscillations vs. decay/ decoherence
	Iook for differences between neutrino and anti-neutrinos
2	Study v _µ →v _e mixing
21	I measure θ_{13}
	Mass hierarchy
	Delta CP

Making a Neutrino Beam

Making an Anti-neutrino Beam

Making the NOvA Neutrino Beam

P. Vahle, SESAPS 2011

The MINOS Detectors

Magnetized, tracking calorimeters

LAND THE AVER

1 kt **Near Detector** measure beam before oscillations

1 km from source

5.4 kt Far Detector look for changes in the beam relative to the Near Detector

735 km from source

Tracking sampling calorimeters
 steel absorber 2.54 cm thick (1.4 X₀)

- scintillator strips 4.1 cm wide
 - (1.1 Moliere radii)
- I GeV muons penetrate 28 layers
- Magnetized
 - muon energy from range/curvature
 - **distinguish** μ^+ from μ^-
- Functionally equivalent
 - same segmentation
 - same materials
 - same mean B field (1.3 T)

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2\left(2\theta\right)\sin^2\left(1.27\Delta m^2 L / E\right)$$

Monte Carlo

10

(Input parameters: $\sin^2 2\theta = 1.0$, $\Delta m^2 = 3.35 \times 10^{-3} \text{ eV}^2$)

P. Adamson et al., Phys.Rev.Lett. 106 181801 (2011)

†G.L. Fogli et al., PRD 67:093006 (2003) ‡V. Barger et al., PRL 82:2640 (1999) *J. Hosaka et al., Phys. Rev. D 74, 032002 (2006) No oscillations: 2451Observe: 1986

$$\left|\Delta m^2\right| = 2.32^{+0.12}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2$$

 $\sin^2(2\theta) > 0.90 \ (90\% \,\mathrm{C.L.})$

Oscillations fit the data well, 66% of experiments have worse χ²
 Pure decoherence[†] disfavored at 9σ
 Pure decay[‡] disfavored at 7σ

Anti- v_{μ} Disappearance

- □ No oscillations: 276
- Oscillated Prediction: 196
- □ Observe: 197
- No oscillations disfavored at 7.3σ

$$\left|\overline{\Delta m^2}\right| = (2.62^{+0.31}_{-0.28} \text{ (stat.)} \pm 0.09 \text{ (syst.)}) \times 10^{-3} \text{eV}^2$$

 $\sin^2(2\overline{\theta}) > 0.75 \text{ (90\% C.L.)}$

Comparisons

Assuming identical underlying oscillation parameters, the neutrino and antineutrino measurements are consistent at the 42% C.L. (compared to 2% in 2010)

Neutrino Time of Flight

4

Phys.Rev. D76 (2007) 072005

ment.

Neutrinos arrive 126 ± 32 (stat.) ± 64 (syst.) ns before expected -2.4x10⁻⁵ < (v-c)/c < 12.6x10⁻⁵ (99% C.L.)

Efforts to improve systematics and timing system are underway

15

□ At L/E~500 km/GeV, dominant oscillation mode is $v_{\mu} \rightarrow v_{\tau}$ $\square A$ few percent of the missing ν_{μ} could change into ν_{e} $P(v_{\mu} \rightarrow v_{e}) = \begin{vmatrix} \sqrt{P_{atm}} e^{-i(\frac{\Delta m_{32}^{2}L}{4E} + \delta_{cp})} + \sqrt{P_{sol}} \end{vmatrix}^{2}$ $P_{atm} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right) \quad P_{sol} \approx \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2}L}{4E}\right)$ "Atmospheric" Term "Solar" Term Depends on Δm^2 <1% for current and unknown θ_{13} accelerator experiments

Interference Term

depends on $\delta_{\rm CP}$ - for neutrinos, + for antineutrinos

16

□ At L/E~500 km/GeV, dominant oscillation mode is $v_{\mu} \rightarrow v_{\tau}$ □ A few percent of the missing v_{μ} could change into v_{e}

$$P\left(\nu_{\mu} \rightarrow \nu_{e}\right) = \left| \sqrt{P_{atm}} e^{-i\left(\frac{\Delta m_{32}^{2}L}{4E} + \delta_{cp}\right)} + \sqrt{P_{sol}} \right|^{2}$$

$$P_{atm} = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E} - aL\right) \left(\frac{\frac{\Delta m_{31}^{2}L}{4E}}{\left(\frac{\Delta m_{31}^{2}L}{4E} - aL\right)}\right)^{2} P_{sol} \approx \cos^{2}\theta_{23}\sin^{2}2\theta_{12}\sin^{2}\left(aL\right) \left(\frac{\frac{\Delta m_{21}^{2}L}{4E}}{aL}\right)^{2}$$

$$a = \pm \frac{G_{F}N_{e}}{\sqrt{2}} \approx (4000 \text{ km})^{-1}$$

In matter, additional term in Hamiltonian from V_e + 0 CC scattering modifies oscillation probability, ~30% effect in MINOS

Fitting to Oscillations

Expect: 49.6±7.0(stat.)±2.7(syst.)

(in signal enhanced region)

- Observe: 62 events in the FD
- □ Best fit: $\sin^2(2\theta_{13}) = 0.041$ (normal hierarchy, $\delta_{CP} = 0$, $\sin^2(2\theta_{23}) = 1$)

P. Vahle, SESAPS 2011

for
$$\delta_{CP} = 0$$
, $\sin^2(2\theta_{23}) = 1$,
 $\left|\Delta m_{32}^2\right| = 2.32 \times 10^{-3} \text{ eV}^2$

 $\sin^2(2\theta_{13}) = 0.041 \ (0.079)$ at best fit $\sin^2(2\theta_{13}) < 0.12 \ (0.20)$ at 90% C.L. $\sin^2(2\theta_{13}) = 0$ excluded at 89%

Comparing to T2K

We have more data on tape and are still running

The NOvA Detectors

Detector Technology

- PVC extrusion + Liquid Scintillator
 mineral oil + 5% pseudocumene
- Read out via WLS fiber to APD
 muon crossing far end=38 PE
- Layered planes of orthogonal views
- 0.15 X₀ per layer

21

Scintillator cell with looped WLS Fiber

16 Cell

PVC Extrusion

15.6m

APD

P. Vahle, SESAPS 2011

3.9cm

6.0cm

P. Vahle, SESAPS 2011

Sensitivity

23

Sensitivity to sin²(2θ₁₃) after 3 years each of neutrino beam and antineutrino beam

Project Timeline

🗆 Beam:

24

 Accelerator shutdown to install upgrades for 700kW beam: March 2012

□ FD:

- Start construction: Jan 2012
- 50% detector by end of shutdown
- Complete by early 2014

□ ND:

- Cavern excavation during shutdown
- Prototype in operation at FNAL on the surface

NDOS

- At the intersection of the NuMI and Booster beams
- Run Goals:

25

- Test detector design and installation procedures
- Exercise calibration scheme
- Verify cosmic background suppression
- Benchmark MC

Neutrinos

Neutrinos

MINOS+

28

- In the NOvA era, the MINOS detectors will be exposed to a high intensity beam peaked at 7 GeV
- Above the oscillation sweet spot, but in a region that currently suffers from poor statistics
- Plans for upgraded TOF measurement

Summary

29

- With 7x10²⁰ POT of neutrino beam, MINOS finds
 - muon-neutrinos disappear

 $\left|\Delta m^2\right| = 2.32^{+0.12}_{-0.08} \times 10^{-3} \text{eV}^2,$ $\sin^2(2\theta) > 0.90 \ (90\% \text{ C.L.})$

So Do antineutrinos

 $\left|\overline{\Delta m^2}\right| = (2.62^{+0.31}_{-0.28} \pm 0.09) \times 10^{-3} \text{eV}^2,$ $\sin^2(2\overline{\theta}) > 0.75 \ (90\% \text{ C.L.})$ Updated electron neutrino appearance results

 $\sin^2(2\theta_{13}) < 0.12 (0.20)$ at 90% C.L. $\sin^2(2\theta_{13}) = 0$ excluded at 89%

NOvA and MINOS+ on the horizon!

Backup Slides

Neutrinos Have Mass!

$$\begin{bmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{bmatrix} = \mathbf{U}^{\dagger} \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix} P(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta}) = \left| \sum_{j} U_{\beta j}^{*} e^{-i\frac{m_{j}^{2}L}{2E}} U_{\alpha j} \right|^{2}$$
$$\mathbf{U} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cos\theta_{23} & \sin\theta_{23} \\ \mathbf{0} & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & \mathbf{0} & \sin\theta_{13}e^{-i\delta} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -\sin\theta_{13}e^{i\delta} & \mathbf{0} & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & \mathbf{0} \\ -\sin\theta_{12} & \cos\theta_{12} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

A neutrino created as one flavor can later be detected as another flavor, depending on:

- distance traveled (L)
- neutrino energy (E)
- difference in the squared masses $(\Delta m_{ij}^2 = m_i^2 m_i^2)$
- The mixing amplitudes (U_{ai})

The PMNS Mixing Matrix

32

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

□ (12) Sector: Reactor + Solar, L/E~15,000 km/GeV

$$^{\dagger}\Delta m_{21}^2 = 7.50_{-0.20}^{+0.19} \times 10^{-5} \text{ eV}^2 \quad \tan^2 \theta_{12} = 0.452_{-0.033}^{+0.035}$$

□ (23) Sector: atmospheric and accelerator, L/E~500 km/GeV

^{††}
$$\left|\Delta m_{32}^{2}\right| = 2.32_{-0.08}^{+0.12} \times 10^{-3} \text{ eV}^{2} \text{ sin}^{2}(2\theta_{23}) > 0.96(90\% \text{ C.L.})$$

□ (13) Sector mixing not yet observed ** $\sin^2(2\theta_{13}) < 0.15 - 0.16$ [†]PRD 83.052002(2011)
^{††}PRL 106. 181801(2011)
^{*}SuperK Preliminary, Nu2010
^{**} Eur.Phys. C27:331-37420031

Why Measure All These Numbers?

Precision measurements provide a valuable check that neutrino oscillations are the solution to neutrino anomalies

33

- PMNS matrix analogous to CKM matrix
 - lepton sector mixing much larger than quark sector mixing
 - θ₂₃ maximal, θ₁₂ moderately large, θ₁₃ small, zero? why?
 - Is there CP violation in the lepton sector?
 - Is it big enough to account for matter vs. antimatter asymmetry in the Universe?
- Small neutrino mass suggests a heavy partner (see-saw mechanism)— Neutrinos provide a window to physics at the GUT scale!

Soudan Fire

34

- March 17, smoke detected in FD hall due to a fire in the shaft
- Power to the lab shut off automatically
- Foam pumped in to extinguish the fire
- No damage to the MINOS detector
- Detector returned to full operations May 19

Events in MINOS

Simulated Events

long µ track, hadronic activity at vertex

35

- energy sum of muon energy (range or curvature) and shower energy
- short, diffuse shower
 energy from
 calorimetric response
 energy from
 calorimetric
 response

Neutrino Spectrum

36

Use flexibility of beam line to constrain hadron production, reduce uncertainties due to neutrino flux

Near to Far

37

Far spectrum without oscillations is similar, but not identical to the Near spectrum!

- Neutrino energy depends on angle wrt original pion direction and parent energy
 - higher energy pions decay further along decay pipe
 - angular distributions different between Near and Far

Extrapolation

- Muon-neutrino and anti-neutrino analyses: beam matrix for FD prediction of track events
- NC and electron-neutrino analyses: Far to Near spectrum ratio for FD prediction of shower events

CCAnalysis Improvements

- Since PRL 101:131802, 2008
- Additional data

- □ $3.4 \times 10^{20} \rightarrow 7.2 \times 10^{20} \text{ POT}$
- Analysis improvements
 - updated reconstruction and simulation
 - new selection with increased efficiency
 - no charge sign cut
 - improved shower energy resolution
 - separate fits in bins of energy resolution
 - smaller systematic uncertainties

CC events in the Near Detector

4

 $\sin^2(2\theta) > 0.90 (90\% \text{ C.L.})$

- □ Pure decoherence[†] disfavored at **90**
- Pure decay[‡]
 disfavored at 7σ

†G.L. Fogli et al., PRD 67:093006 (2003)
‡V. Barger et al., PRL 82:2640 (1999)
*J. Hosaka et al., Phys. Rev. D 74, 032002 (2006)

42

MINOS Preliminary

- Contour includes effects of dominant systematic uncertainties
 - normalization
 - NC background
 - shower energy
 - track energy

Contours by Run Period

43

v_{μ} Disappearance

44

P. Adamson et al., Phys.Rev.Lett. 106 181801 (2011)

†G.L. Fogli et al., PRD 67:093006 (2003) ‡V. Barger et al., PRL 82:2640 (1999) *J. Hosaka et al., Phys. Rev. D 74, 032002 (2006)

	Predicted (no osc.)	Observed	
Contained	2451	1986	
Non-contained	2206	2017	

$$\left|\Delta m^2\right| = 2.32^{+0.12}_{-0.08} \times 10^{-3} \,\mathrm{eV}^2$$

 $\sin^2(2\theta) > 0.90 \ (90\% \,\mathrm{C.L.})$

Oscillations fit the data well, 66% of experiments have worse χ²
 Pure decoherence[†] disfavored at **9σ**

□ Pure decay[‡] disfavored at **70**

Anti-neutrino Disappearance

- Measure oscillations using 7% anti-neutrino component of the neutrino beam
- Peaked at higher energies

45

□ Selection efficiency 90%, purity 95%

Anti-neutrino Disappearance

P. Vahle, INFO 2011

Anti-neutrino Disappearance

Making an antineutrino beam

48

Hadron production and cross sections conspire to change the shape and normalization of energy spectrum

~3x fewer antineutrinos for the same exposure

ND Anti-neutrino Data

Focus and select positive muons

- purity 94.3% after charge sign cut
- □ purity 98% < 6GeV
- Analysis proceeds as (2008) neutrino analysis
- Data/MC agreement comparable to neutrino running
 - different average kinematic distributions
 - more forward muons

Neutral Current Near Event Rates

- Neutral Current event rate should not change in standard 3 flavor oscillations
- A deficit in the Far event rate could indicate mixing to sterile neutrinos
- V_e CC events would be included in NC sample, results depend on the possibility of V_e appearance

Neutral Currents in the Far Detector

Neutral Current event rate should not change in standard 3 flavor oscillations

Fits to NC

52

□ Fit CC/NC spectra simultaneously with a 4th (sterile) neutrino \square 2 choices for 4th mass eigenvalue $\square m_4 >> m_3$ $\square m_4 = m_1$

The Updated Analysis

- Look for an excess of v_e in the FD compared to prediction from ND measurement
 - select events with a v_e topology
 - apply selection to ND, determine fraction of each background type
 - extrapolate each background type separately
 - fit FD data to extract oscillation parameters
- Updated analysis:

- new event selection
- new fitting technique in the FD
- more data

Near Detector Data

55

ND data sample comprised of NC, v_{μ} CC, beam v_{e} CC interactions.

- Each propagates to the FD in a different manner
- Must determine relative composition of ND spectrum

Looking for Electron-neutrinos

New electron neutrino selection technique

56

- Compare candidate events to a library of simulated signal and background events
- Comparison made on a strip by strip basis
- Discriminating variables formed using information from 50 best matches

• • • Library Event #30M

Discriminating Variables

57

Three discriminating variables combined in neural net

□ Achieve ~40% signal efficiency, ~98% BG rejection

ahle, SESAPS 2011

Measuring the Background

- Use ND data in different configurations to extract relative components of background
- Selected event spectrum has different relative components of each background type

58

Reconstructed Energy (GeV)/ahle, SESAPS 2011

Decomposition

59

 In signal enhanced region, based on ND data, expect: 49.6±7.0(stat.)±2.7(syst.)

□ Observe: 62 events in the FD

60

P. Vahle, INFO 2011

FD Data

61

Energy spectrum for signal enhanced region

Electron-neutrino Systematics

Systematics evaluated using modified MC

62

- Effect of systematics on each bin added in quadrature
- Systematics in each bin included in fit as nuisance parameters

Uncertainty source	Uncertainty on background events		
Event energy scale	4.0%		
ν_{τ} background	2.1%		
Relative FD/ND rate	1.9%		
Hadronic shower model	1.1%		
All others	2.0%		
Total	5.4%		

TABLE I: Systematic uncertainties on the number of predicted background events in the FD in the signal region, defined by LEM>0.7. The final θ_{13} measurement uses multiple LEM and reconstructed energy bins and thus uses a full systematics covariance matrix. These uncertainties, which are small compared to the statistical errors, lead to a 7.0% loss in sensitivity to $\sin^2(2\theta_{13})$. The "All others" category includes uncertainties relating to the neutrino flux, cross sections, detector modeling, and background decomposition.

Electron-neutrino F/N ratios

63

Checking Signal Efficiency

Test beam
 measurements
 demonstrate
 electrons are well
 simulated

Checking Signal Efficiency

65

Check electron neutrino selection efficiency by removing muons, add a simulated electron

Feldman-Cousins Effect

66

electron anti-neutrino appearance

Combined fits

FIG. 3: Global 3ν analysis. Preferred $\pm 1\sigma$ ranges for the mixing parameter $\sin^2 \theta_{13}$ from partial and global data sets. Solid and dashed error bars refer to old and new reactor neutrino fluxes, respectively.

Combined Fits

69

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the mass-mixing parameters, assuming old reactor neutrino fluxes. By using new reactor fluxes, the corresponding best fits and ranges for $\sin^2 \theta_{12}$ and $\sin^2 \theta_{13}$ (in parentheses) are basically shifted by about +0.006 and +0.004, respectively, while the other parameters are essentially unchanged.

Parameter	$\delta m^2/10^{-5}~{\rm eV^2}$	$\sin^2 heta_{12}$	$\sin^2 heta_{13}$	$\sin^2 heta_{23}$	$\Delta m^2/10^{-3}~{\rm eV^2}$
Best fit	7.58	0.306 (0.312)	0.021 (0.025)	0.42	2.35
1σ range	7.32 - 7.80	0.291 - 0.324 (0.296 - 0.329)	0.013 - 0.028 ($0.018 - 0.032$)	0.39 - 0.50	2.26 - 2.47
2σ range	7.16 - 7.99	0.275 - 0.342 (0.280 - 0.347)	0.008 - 0.036 (0.012 - 0.041)	0.36 - 0.60	2.17 - 2.57
3σ range	6.99 - 8.18	0.259 - 0.359 (0.265 - 0.364)	0.001 - 0.044 ($0.005 - 0.050$)	0.34 - 0.64	2.06 - 2.67

Atmospheric Neutrinos

70

 $R_{\overline{\nu}/\nu}^{data} / R_{\overline{\nu}/\nu}^{MC} = 1.04_{-0.10}^{+0.11} \pm 0.10$ $\left| \Delta m^2 \right| - \left| \overline{\Delta m^2} \right| = 0.4_{-1.2}^{+2.5} \times 10^{-3} \,\mathrm{eV}^2$

Seasonal Muon Variation

MC Events in NOvA

73

Case Study

74

Interaction Type	Events in 3 years
ν_{μ} CC	2500
NC	2200
$v_e^{}$ CC beam	120
$v_e^{}$ CC signal	270

- Consider v_e appearance at the CHOOZ limit:
 - Before cuts, signal is 4σ above background
 - Cuts on summed event pulse height, event length: 7σ
 - Sophisticated selection
 based on event topology: 18σ
 - Compare to ~4σ of MINOS analysis

Mass Hierarchy

75

 $2 \sin^2(\theta_{23}) \sin^2(2\theta_{13})$

 $2 \sin^2(\theta_{23}) \sin^2(2\theta_{13})$

Muon Neutrino Disappearance

Sensitivity to (∆m², sin2(2θ₂₃)) after 3 years each of neutrino beam and antineutrino beam

76

If tension in MINOS neutrino/ antineutrino results persists, the difference in the neutrino and antineutrino parameters measured by nova

Muon Neutrino/Antineutrino Disappearance

77

3 Years Each

1 Year Each

Near Detector On the Surface

NuMI Beam

NDOS

MINOS

Booster Beam

 Exposed to Booster and NuMI neutrino beams
 110 mrad off NuMI axis
 Nearly on Booster Axis (det. rotated wrt beam)

BOOSTER RA

Wilson Hall

NUMI BLVD

NDOS Energy Spectrum — NuMI

Event counts for 1×10^{20} POT, 46 ton fiducial mass, no inefficiency

79

NDOS Energy Spectrum — Booster

80

Event counts for 1×10^{20} POT, 46 ton fiducial mass, no inefficiency

Lessons Learned

81

- 22% of module manifolds developed cracks during detector installation
 - "Splints" to fix NDOS
 - Changes to pressure testing
 - Redesign of manifolds
- □ APDs and oil do not mix
 - plan to coat APDs with epoxy
 - revamped procedures to ensure cleanliness is maintained during industrial scale installation

Calibration

Cosmic muons provide intra-detector calibration source

Michel Electrons

Use Michel electrons for electro-magnetic energy calibration

Finding Neutrinos

'S 2011

Comparisons to MC

85

Early look at contained events indicates NuMI MC event rate agrees with data

MINOS+

86

Continue to contribute to oscillation parameter measurements, but with different systematics

MINOS+

87

- Sterile neutrino reach
- Use CC disappearance (brown)

NC rate (purple)

Tau Neutrinos

88

•There are 80 tau events/ 1000 NC

With some work it *might* be possible to see a signal but its hard!
OPERA have 1 tau event so far...

