

Joshua Albert Duke University October 20, 2011

Neutrino Oscillation Review

- In neutrino interactions, we measure weak (flavor) states (e,μ,τ) which are superpositions of the 3 mass states.
- 2-flavor example (good approximation): $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^{2} 2\theta \sin^{2} \left(1.27 \Delta m^{2} (\text{eV}^{2}) \frac{L(\text{km})}{E(\text{GeV})} \right)$
- Overall, 3-flavor mixing is described by 4 parameters: θ_{12} , θ_{23} , θ_{13} , δ_{CP} .

Normal hierarchy eigenstate fractions

How We Measure θ_{13}

- The only unmeasured parameters were θ_{13} (which we know is small) and δ_{CP} (which we know nothing about).
- For technical reasons, we can only hope to measure δ_{CP} if θ_{13} is non-zero. δ_{CP} would be interesting to measure, because it describes whether neutrinos and anti-neutrinos oscillate differently.
- To measure θ_{13} , we can search for $v_{\mu} \rightarrow v_{e}$ oscillation!

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27 \Delta m^{2} (\text{eV}^{2}) \frac{L(\text{km})}{E(\text{GeV})} \right)$$

• We know θ_{13} is small, so this will be rare. Build setup like this:

T2K Overview

Neutrino Beam (pt. 1)

Pulsed beam of 30 GeV protons from accelerator Slam into graphite target, Make pions (and other particles)

 $p + p \rightarrow p + \pi^+ + \dots$

Target is placed inside 1st magnetic horn...

trino spectrum from the two-horn beam at the NuMI facility at FNAL. The components of the spectrum correspondent trajectories of Fig. 17. Taken from [184].

pole-focused beams are generally less efficient than horn focusing, but they are relatively i design, relying on magnets for conventional accelerator rings and they need not be pulsed, po beams

single quadrupole magnet acts like a focusing lens in one plane and a defocusing lens in the single quadrupole magnet acts like a focusing lens in both planes. Quadrupole triplets, furthermore, help make t act like a net focusing lens in both planes. Quadrupole triplets, furthermore, help make t lar **0**, **h** oth planes [130,193,76]. The aperture of a quadrupole is typically much smaller t y high energy neutrino beams such is not a limitation: recalling that secondaries off the tar with angular spread 0, 10° , $300 \,\text{GeV}/c$, p, a quadrupole's acceptance is well-matched to h a single of the neutrino flux from a horn-focused and quad triplet beam at a 500 Ge. In principle, a quadrupole system provides an exact focus for a particular momentum $\langle p \rangle$ or the single of the tar and the principle of the target of the neutrino flux from a horn-focused and quad triplet beam at a 500 Ge.

Vii beam

Horn 3

Detector

Joshua Albert

SESAPS Roanoke: Neutrino Session

Detector

 v_{μ} beam

source

 V_{μ}

Neutrino Beam (pt. 4)

Near Detectors

SESAPS Roanoke: Neutrino Session

Dukeuniversity

Joshua Albert

source

October 21, 2011

9

Detecting Neutrinos

- We only detect the charged products of neutrino interactions!
- Charged particles in traveling faster than the speed of light in some medium (like a sonic boom)
- $v_{light} = c/n$ (n = index of refraction) in water, $v_{light} \approx 0.75c$

Super-Kamiokande

SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYO

- 50,000 ton water Cherenkov detector
- 11,146 PMTs in ID, 1,885 in OD

~1km underground in Mt. Ikenoyama

SK Reconstruction

- Find vertex (mostly timing)
- Count rings
- Find momenta
- PID from ring topology ("fuzziness")

v_e Appearance Signal

- Charged Current Quasi-Elastic Events
- Only single lepton ring visible at SK
- Ring topology indicates $\nu_{\rm e}$ vs. ν_{μ}

$$E_{\nu} = \frac{m_N E_l - m_l^2/2}{m_N - El + p_l \cos \theta_l}$$

 Incident neutrino energy can be reconstructed!

ve Appearance Backgrounds

Event Selection

Fiducial Volume

Signal: Single

electron ring!

• Fully Contained

Event Selection

- Fiducial Volume
- Fully Contained
- E_{vis}>100 MeV
- One Ring

Signal: Single

electron ring!

• E-like

Event Selection

- Fiducial Volume
- Fully Contained
- E_{vis}>100 MeV
- One Ring

Signal: Single

electron ring!

• E-like

Joshua Albert

• No $\mu \rightarrow e$ decay

Dukeuniversity

Dukeuniversity

Dukeuniversity

19

October 21, 2011

And now, Let's look at the data!

Six Events Observed!

Joshua Albert

21

What it Means for θ_{13}

Observed 6 Events, with 1.5±0.3 events background at $\theta_{13} = 0$

Systematic Errors

Background 23%	SK	Cross S	Section	Flux	ND
Signal 18%	SK	Cross Section	Flux	ND	
Joshua Albert TZR Duke		SESAPS Roanoke: N	Veutrino Sessio	on	October 21, 20

1 Ke UNIVERSITY

Results

Joshua Albert

Dukeuniversity

Summary/Looking Ahead

- The T2K experiment features an off-axis beam of v_{μ} with near detectors and a far detector, Super-Kamiokande, 295 km away.
- It has found indications of v_e appearance in a v_{μ} beam, and has excluded $\theta_{13} = 0$ at ~ 99.3% CL.
- 6 events were observed on an expected background of 1.5 events.
- Experiment is temporarily disabled due to March 2011 earthquake, but will return in 2012 to deliver stronger results!

Thank You!

Supplemental Slides

Joshua Albert

Near Detectors: INGRID

- Measure beam direction and intensity
- **On-axis** detector
- Iron/scintillator alternating layers, modular design.

Dukeuniversity

27

Near Detectors: ND280 Off-Axis

Near Detectors: ND280 Off-Axis

Neutrino Beam (pt. 3)

θ_{13} and δ_{CP}

- δ_{CP} observation only possible with all three mixing angles non-zero!
- Non-zero δ_{CP} means neutrinos and anti-neutrinos oscillate differently, this may be related to the matter dominance over anti-matter in the universe.
- To measure δ_{CP} : Perform v_e appearance experiments with both neutrinos and anti-neutrinos.
- δ_{CP} does not manifest in disappearance experiments!

$$P_{\alpha \to \beta} = \left| \left\langle \nu_{\beta} | \nu_{\alpha}(t) \right\rangle \right|^{2} = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2}L/2E} \right|^{2} \qquad P_{\alpha \to \alpha} = \left| \sum_{i} \left| U_{\alpha i} \right|^{2} e^{-im_{i}^{2}L/2E} \right|^{2}$$

Current T2K Timing System

- T2K beam trigger comes from kicker magnets
- "Commonview" GPS mode used

Dukeuniversity

Joshua Albert

• At SK, 2 GPS units and a Rubidium clock are used to measure and confirm the time stability.

T2K Beam Timing

- Bunch structure from protons in beam visible at SK.
- Narrow bunches could be an advantage for T2K for TOF measurement.

Six Events Observed

Vertices appear surprisingly clustered, but extensive studies found no evidence for contamination from outside the detector.

Beam Purity and Spectrum

Main Decay $\pi^+
ightarrow \mu^+ +
u_\mu$

Other Decays $\mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \nu_e$ $K^+ \rightarrow \pi^0 + e^+ + \nu_e$ $\pi^- \rightarrow \mu^- + \overline{\nu_{\mu}}$

And many more...

- Beam energy tuned to $\Delta m_{13}^2 (\approx \Delta m_{23}^2)$ oscillation maximum.
- Maximum v_{μ} disappearance, maximum v_{e} appearance.

Dukeuniversity

Joshua Albert

October 21, 2011

Six Events Observed

