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Cosmic acceleration and Dark Energy 

Evidence from distances to Supernovae Type Ia   
(since 1998! About 557 supernovae now!) 

 
 

2011 Nobel Prize in Physics 



The acceleration of the expansion of the 
Universe is one of the most challenging 
and important problems in cosmology 

•  The observational evidence for cosmic acceleration has 
continued to grow for the last 12 years  

 
•  IMPORTANT: The evidence comes from several 

independent and  complementary cosmological 
observations.  

 
•  Possible explanations: 

–  A new form of energy in the universe called Dark Energy, i.e. the 
Cosmological Constant. 

–  A modification or extension of the gravitational theory at 
cosmological scales of distances 



CMB from the Wilkinson Microwave 
Anisotropy Probe (WMAP)  

 Homogeneous and isotropic on large scales 
 
 



BAO from SDSS LRG, 6dFGS and 
WiggleZ 

Standard rulers for measuring the cosmic acceleration 
from structures of galaxies. 

 



Combined 
constraints 
from SN, 
BAO, CMB 
give support to  
the standard 
model in 
cosmology: 

 Lambda Cold 
Dark Matter 
(LCDM) 
model  

Observational Tests of Cosmological 
Models 



Observational Tests of Cosmological 
Models  

LCDM model as the Standard Model of Cosmology. 
 
 
 
 
 
 
 
 
 
 
 
Other explanations for the cosmic expansion need to be tested. 
 
              Let’s try some modified gravity models. 



•  Einstein-Hilbert action with additional term  
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Recently, some f(G) higher order gravity models have been shown to exhibit some interesting
phenomenology including a late time cosmic acceleration following a matter-dominated deceleration
period with no separatrix singularities in between the two phases. In this work, we compare the
models to the solar system limits from the gravitational frequency redshift, the deflection of light,
the Cassini experiment, the time delay and the perihelion shift of planets deriving various bounds
on the model parameters. We contrast the bounds obtained with the cosmological constraints on
these models finding that the models pass simultaneously both types of constraints.

PACS numbers: 98.80.-k, 95.36.+x

I. INTRODUCTION

One possible cause of cosmic acceleration can be a modification or an extension to General Relativity that takes
effect at cosmological scales of distance. Among these modified gravity models are the higher order gravity models. In
addition to the usual Einstein-Hilbert action, these models contain other more general invariants based on the Ricci
and Riemann curvature tensors [1]. In some of these models, there is a late cosmic acceleration due to a different
coupling between the matter and space-time curvature. Many papers have been written on the f(R) models [2] while
a smaller fraction was devoted to models built from the Ricci and Riemann tensors invariants [3]. Higher order gravity
models have been shown to have an interesting phenomenology [1, 2] and have also theoretical motivations within
unification theories and field quantization on curved space-times, see for example [4, 5, 5–15] and references therein.
In this paper, we consider a composed invariant that is a topological invariant and is called in the literature the

Gauss-Bonnet invariant, denoted asG. This invariant leads to a theory free of unphysical states [6, 16, 17]. Specifically,
we consider models where the action is made of the Einstein-Hilbert action plus a function F (G) of the Gauss-Bonnet
invariant. We also restrict our study to models that have been shown in previous works to have no ghost instabilities
and no superluminal propagations [18] in cosmological homogeneous and isotropic backgrounds. The models that we
consider have also been shown to be cosmologically viable including radiation/matter domination followed by a late
time self acceleration period [19] with no separatrix in between. Here we compare the models to the solar system tests
including the bending of light, the Cassini effect, time delay, the perihelion shift, and the gravitational redshift. We
then compare the solar system constraints to those from cosmology in order to put more stringent combined bounds
on the models.

II. f(G) MODELS

Several f(G) models have been proposed in the literature [18] and were found [19] to have a cosmological transition
from a radiation/matter dominated decelerating period followed by a period dominated by a cosmic acceleration, with
no separatrix in between the two periods, as it should. The models are in general derived from varying the action

I =

∫

d4x
√
−g

[

1

2
R+ f(G)

]

+

∫

d4x
√
−gLsources (1)

with respect to the metric δgαβ , where

G = R2 − 4RαβRαβ +RαβγδRαβγδ (2)

is the Gauss-Bonnet invariant, R is the Ricci scalar, Rαβ is the Ricci tensor, Rαβγδ is the Riemann tensor and Lsources

Lagrangians corresponding to the sources of spacetime. Units with reduced Planck mass M2
pl = (8πGN )−1 = 1 are
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used. The corresponding field equations read

8[Rαγβδ +Rγβgδα −Rγδgβα −Rαβgδγ +Rαδgβγ +
1

2
R(gαβgδγ − gαδgβγ)]∇γ∇δfG

+(GfG − f)gαβ +Rαβ −
1

2
gαβR = T sources

αβ , (3)

where T sources
αβ is the energy momentum tensor of the source(s).

III. EXPANDING AROUND THE STATIC SPHERICALLY SYMMETRIC VACUUM SPACETIME

First, we can use for the models considered in this paper the notation for the action R+F (G) = R+αf(G) where
it was found from cosmological constraints that α # 1 [19]. Next, we consider the field equations in vacuum and use
the α parameter so we can write the equations as

Gαβ + αHαβ = 0, (4)

where we used the short notation

α
{

8[Rαγβδ +Rγβgδα −Rγδgβα −Rαβgδγ +Rαδgβγ +
1

2
R(gαβgδγ − gαδgβγ)]∇γ∇δfG + (GfG − f)gαβ

}

= αHαβ . (5)

Now, since |α| # 1, we choose to use it as the expansion parameter in our Taylor series of the metric functions A(r,α)
and B(r,α) below. Following previous work [20–22] for solar system tests, we will consider the contribution from the
Gauss-Bonnet term to be very small compared to the General Relativity (or Newtonian) term and will expand around
the latter. We will see later that this approximation is correct. For that we consider the general static spherically
symmetric metric of the form,

ds2 = −A(r,α)dt2 +
dr2

B(r,α)
+ r2dΩ2, (6)

where A(r,α) and B(r,α) are the Taylor expanded functions

A(r, α) = A0(r) + αA1(r) + α2A2(r)..., (7)

B(r, α) = B0(r) + αB1(r) + α2B2(r)..., (8)

and the Schwarzschild solution corresponds to A0(r) = B0(r) = 1 − 2GNM/r. While the additional terms αA1(r),
α2A2(r), αB1(r) and α2B2(r) are due to the contribution from the higher order terms in the action. We only consider
solutions up to order α, so the metric becomes,

ds2 = −
(

1−
2GNM

r
+ αA1(r)

)

dt2 +
(

1−
2GNM

r
+ αB1(r)

)−1

dr2 + r2dΩ2, (9)

and that we can write also as

ds2 = −
(

1−
2GNM

r
+ ΦHOG(r)

)

dt2 +
(

1−
2GNM

r
+ΨHOG(r)

)−1

dr2 + r2dΩ2. (10)

As can be seen in the next section, solving the field equations using this metric allows us to write A1(r) and B1(r)
in terms of α and also in powers of ρ ≡ r/(2GNM). We can then select the leading term that makes the next
contribution after the GR term, 2GNM/r in the potential.

IV. SOLAR SYSTEM CONSTRAINTS ON COSMOLOGICALLY VIABLE f(G) MODELS

We will now study some of the cosmologically viable f(G) models considered in [19, 23, 24] and
i) place constraints from the solar system tests as described in the appendix
ii) contrast the solar system constraint to those from cosmological observations looking for what parameter ranges,

if any, the models pass both constraints. The models we consider are:

Solar system tests versus cosmological constraints for f(G) models

Jacob Moldenhauer1∗, Mustapha Ishak1†
1Department of Physics, The University of Texas at Dallas, Richardson, TX 75083, USA

(Dated: October 13, 2011)

Recently, some f(G) higher order gravity models have been shown to exhibit some interesting
phenomenology including a late time cosmic acceleration following a matter-dominated deceleration
period with no separatrix singularities in between the two phases. In this work, we compare the
models to the solar system limits from the gravitational frequency redshift, the deflection of light,
the Cassini experiment, the time delay and the perihelion shift of planets deriving various bounds
on the model parameters. We contrast the bounds obtained with the cosmological constraints on
these models finding that the models pass simultaneously both types of constraints.

PACS numbers: 98.80.-k, 95.36.+x

I. INTRODUCTION

One possible cause of cosmic acceleration can be a modification or an extension to General Relativity that takes
effect at cosmological scales of distance. Among these modified gravity models are the higher order gravity models. In
addition to the usual Einstein-Hilbert action, these models contain other more general invariants based on the Ricci
and Riemann curvature tensors [1]. In some of these models, there is a late cosmic acceleration due to a different
coupling between the matter and space-time curvature. Many papers have been written on the f(R) models [2] while
a smaller fraction was devoted to models built from the Ricci and Riemann tensors invariants [3]. Higher order gravity
models have been shown to have an interesting phenomenology [1, 2] and have also theoretical motivations within
unification theories and field quantization on curved space-times, see for example [4, 5, 5–15] and references therein.
In this paper, we consider a composed invariant that is a topological invariant and is called in the literature the

Gauss-Bonnet invariant, denoted asG. This invariant leads to a theory free of unphysical states [6, 16, 17]. Specifically,
we consider models where the action is made of the Einstein-Hilbert action plus a function F (G) of the Gauss-Bonnet
invariant. We also restrict our study to models that have been shown in previous works to have no ghost instabilities
and no superluminal propagations [18] in cosmological homogeneous and isotropic backgrounds. The models that we
consider have also been shown to be cosmologically viable including radiation/matter domination followed by a late
time self acceleration period [19] with no separatrix in between. Here we compare the models to the solar system tests
including the bending of light, the Cassini effect, time delay, the perihelion shift, and the gravitational redshift. We
then compare the solar system constraints to those from cosmology in order to put more stringent combined bounds
on the models.

II. f(G) MODELS

Several f(G) models have been proposed in the literature [18] and were found [19] to have a cosmological transition
from a radiation/matter dominated decelerating period followed by a period dominated by a cosmic acceleration, with
no separatrix in between the two periods, as it should. The models are in general derived from varying the action

I =

∫

d4x
√
−g

[

1

2
R+ f(G)

]

+

∫

d4x
√
−gLsources (1)

with respect to the metric δgαβ , where

G = R2 − 4RαβRαβ +RαβγδRαβγδ (2)

is the Gauss-Bonnet invariant, R is the Ricci scalar, Rαβ is the Ricci tensor, Rαβγδ is the Riemann tensor and Lsources

Lagrangians corresponding to the sources of spacetime. Units with reduced Planck mass M2
pl = (8πGN )−1 = 1 are

∗ Electronic address: jam042100@utdallas.edu
† Electronic address: mishak@utdallas.edu

•  Gauss Bonnet term: 

•  New field equations: 

Higher Order Gravity (HOG) 
models 



Cosmological 
parameters are 
constrained within 
physical limits. 

Solve and test with 
expansion history for 
FLRW spacetime 

Gauss Bonnet Models 



•  But, these alternative theories of gravity 
must also pass local tests of gravity 

 

 
 
 
 
•  All models are within 95% confidence level (except ZCS-B) 
•  Models are competitive to standard LCDM model 
 

Constraints on Cosmological Models 

CESM


CESM


CESM




Solar System Tests 
 
1. Gravitational redshift 
2. Deflection of light 
3. Time delay 
4. Cassini effect 
5. Perihelion shift of planets 



Method 

•  Field equations for GB models with expansion parameter  
 
•  Contribution from expansion parameter term is small 

compared to Einstein term,  
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•  Spherically symmetric metric with expansion parameter 
for HOG contribution  

 
 
•  Find contribution from GB model, so it will not rule out 
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•  Example: Gravitational redshift measurement 
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V. COMPARISONS AND CONCLUDING REMARKS

We compare here limits from solar system test constraints and cosmological constraints. The results for solar
system derived in the previous section are summarized in the comparative Table I, along with the constraints from
cosmology (including supernova, baryon acoustic oscillations, Hubble Space Telescope Key Project, and CMB surface
distance constraints) [19]. We find that the solar system constraints on the ZCS models are much more stringent than
the constraints from cosmology but provide only a single side bound. Indeed, the solar system constraints on the α
parameter for the ZCS models are four orders of magnitude tighter than the ones from cosmology. The solar system
constraints on the parameter β are extremely tight and the β-term is practically restrained to be negligible compared
to the α-term. Thus for the ZCS models the solar system constraints are totally dominant. For the DFT models, the
solar system constraints for the parameter λ are 7 to 15 orders of magnitude looser than the ones from cosmology so
the cosmology bounds are the significant ones whereas the most stringent constraints on the α parameter are again
from solar system tests but again with only one bound.
Finally, the comparisons show that the cosmological constraints are compatible with those from the solar system

tests thus the combination of the two cannot rule out the models. While the model parameters are constrained to be
small, the Gauss-Bonnet term is very large at cosmological scales so that the resulting terms (except for the β ones)
are large enough to take effect at cosmological scales and to possibly mimic cosmic acceleration. In conclusion, we
find that probes of the cosmic expansion on large scales combined with solar system tests are not enough to rule out
f(G) models.
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Appendix A: Solar system tests

We consider the solar system tests as the constraints from the deviation of General Relativity as discussed, see for
example [26] and more recently [28, 29], for the deflection of light, Cassini experiment, perihelion shift, time delay
and gravitational redshift. We give here only a brief overview on the test and refer the reader to standard books, see
for example [26, 30].

1. Gravitational frequency redshift constraint

For a light signal traveling between two different lattice points [26], such as heights r and r1, the frequency shift
between the two frequencies ν and ν1 can be read off from (10) as

ν

ν1
=

√

A(r)

A(r1)
≈ 1 +

1

2
(ρ−1

1 − ρ−1) +
1

2
(ΦHOG − ΦHOG1

). (A1)

For the small expansion parameter contribution,

∆νΦHOG
/ν

∆νGR/ν
=

ρρ1(ΦHOG − ΦHOG1
)

ρ− ρ1
, (A2)

where ∆ν = ν − ν1. ∆νexp/∆νGR = 1 ± 0.0002 is the bound for this experiment from a hydrogen-maser clock on a
rocket launched to a height of 107 m, [31]. This gives the bound for the modification from ΦHOG term as

∆νΦHOG
/ν

∆νGR/ν
< 2× 10−4, (A3)

which we use in the section IV to place gravitational frequency redshift constraints on the ZCS models and confirm
the constraints on the DFT models.
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•  Contribution from expansion term 
 
•  Constraint on model parameter 
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which, after substituting (18), the particular solution is given by

φ =
6

ρ4
−

2

ρ3
+ 2

√
2× 33/4γρ3/2 −

33/4√
2
γ
√
ρ+ 6

1

ρ
ln ρ. (20)

So, we have arrived at the two solutions for the additional terms φ(ρ) and ψ(ρ), equations (20) and (18). To find the
largest contribution to the metric from these solutions, we can write the full form of the contribution to the metric
as, ΨHOG(ρ) = αψ(ρ),

αψ = −α
2

ρ4
+ α

6

ρ3
−

3√
2
× 33/4βρ3/2 + 3

√
2× 33/4β

√
ρ+ 6α

1

ρ
ln ρ, (21)

and ΦHOG(ρ) = αφ(ρ),

αφ = α
6

ρ4
− α

2

ρ3
+ 2

√
2× 33/4βρ3/2 −

33/4√
2
β
√
ρ+ 6α

1

ρ
ln ρ, (22)

We use the best-fit values from cosmology on α and β, see Table I in [19], to determine the largest contribution will
come from the largest power of ρ, which is term three in (22) and (21). These dominant terms are confirmed in the
general analysis of [22]. This allows us to set bounds on β from solar system constraints, below. Now, we read off
from equations (21) and (22), for the ZCS-A model, the terms for the contribution to the metric as

ΦHOG = 2
√
2× 33/4βρ3/2, ΨHOG = −

3√
2
× 33/4βρ3/2, (23)

for placing bounds on solar system tests.
Using the solution for the contribution for the expansion contribution into the constraints (A2) and (A3) we arrive

at the bound for the gravitational redshift as

ρ2ρ1(ΦHOG(ρ2)− ΦHOG(ρ1))

ρ2 − ρ1
< 2× 10−4. (24)

For the situation described for the gravitational frequency redshift, see [20], ρ1 = 7.18× 108 is the radius of the Earth
and ρ2 = 1.84 × 109 is the distance of the rocket in units of the Schwarzschild radius. So, with the value from (23)
the bound is

β < 4.41× 10−28. (25)

For the measurement of the deflection of light, the radius of the Sun is ρ0 = 2.35× 105 and the distance of the Earth
to the Sun is ρ = 5.08 × 107 [20]. For the ZCS models, we numerically integrate the contribution for ϑΦHOG,ΨHOG

term in equation (A11) for light bending tests of ZCS models now with the dominant contributions of ΦHOG and
ΨHOG from equations (23) and the system for ρ0, ρ known. This solution is used in the constraint (A13) to give the
bound

β < 2.37× 10−20. (26)

We also numerically integrate (A11) for conditions of the Cassini experiment. The experiment gives the speed of
Earth vEarth = 9.93× 10−5 in units of speed of light, and the distance of Saturn as ρCass = 4.85× 108. This gives
the contribution to the bound from equations (A14) and (A15) using yα < 10−14, as

β < 6.69× 10−22. (27)

For the constraint on time delay, we numerically integrate the contribution for tΦHOG,ΨHOG
term in equation (A17).

We use the dominant contributions of ΦHOG and ΨHOG from equations (23) and the system for the Viking mission
to Mars with ρMars = 7.71 × 107 and the values for ρ0 and ρEarth given earlier. This solution combined with the
constraint from equation (A19) gives the bound

β < 3.31× 10−22. (28)

Finally, for the perihelion shift of the planets, we see from the solutions (23) that the form of the expansion
contribution can be written as ΦHOG = c1βρp and ΨHOG = c2βρp. We can expand (A23) to first order in β as

d2u

dϕ2
+ u−

GNM

h2
=

3

2
u2 +

βu−p−1GNM

h2ρ30
{c1p(ρ0 − 1)(h2(2GNM)−1 + ρ20)}, (29)
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33/4√
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√
ρ+ 6
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ρ
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2× 33/4β
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ρ
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=
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2

used. The corresponding field equations read

8[Rαγβδ +Rγβgδα −Rγδgβα −Rαβgδγ +Rαδgβγ +
1

2
R(gαβgδγ − gαδgβγ)]∇γ∇δfG

+(GfG − f)gαβ +Rαβ −
1

2
gαβR = T sources

αβ , (3)

where T sources
αβ is the energy momentum tensor of the source(s).

III. EXPANDING AROUND THE STATIC SPHERICALLY SYMMETRIC VACUUM SPACETIME

First, we can use for the models considered in this paper the notation for the action R+F (G) = R+αf(G) where
it was found from cosmological constraints that α # 1 [19]. Next, we consider the field equations in vacuum and use
the α parameter so we can write the equations as

Gαβ + αHαβ = 0, (4)

where we used the short notation

α
{

8[Rαγβδ +Rγβgδα −Rγδgβα −Rαβgδγ +Rαδgβγ +
1

2
R(gαβgδγ − gαδgβγ)]∇γ∇δfG + (GfG − f)gαβ

}

= αHαβ . (5)

Now, since |α| # 1, we choose to use it as the expansion parameter in our Taylor series of the metric functions A(r,α)
and B(r,α) below. Following previous work [20–22] for solar system tests, we will consider the contribution from the
Gauss-Bonnet term to be very small compared to the General Relativity (or Newtonian) term and will expand around
the latter. We will see later that this approximation is correct. For that we consider the general static spherically
symmetric metric of the form,

ds2 = −A(r,α)dt2 +
dr2

B(r,α)
+ r2dΩ2, (6)

where A(r,α) and B(r,α) are the Taylor expanded functions

A(r, α) = A0(r) + αA1(r) + α2A2(r)..., (7)

B(r, α) = B0(r) + αB1(r) + α2B2(r)..., (8)

and the Schwarzschild solution corresponds to A0(r) = B0(r) = 1 − 2GNM/r. While the additional terms αA1(r),
α2A2(r), αB1(r) and α2B2(r) are due to the contribution from the higher order terms in the action. We only consider
solutions up to order α, so the metric becomes,

ds2 = −
(

1−
2GNM

r
+ αA1(r)

)

dt2 +
(

1−
2GNM

r
+ αB1(r)

)−1

dr2 + r2dΩ2, (9)

and that we can write also as

ds2 = −
(

1−
2GNM

r
+ ΦHOG(r)

)

dt2 +
(

1−
2GNM

r
+ΨHOG(r)

)−1

dr2 + r2dΩ2. (10)

As can be seen in the next section, solving the field equations using this metric allows us to write A1(r) and B1(r)
in terms of α and also in powers of ρ ≡ r/(2GNM). We can then select the leading term that makes the next
contribution after the GR term, 2GNM/r in the potential.

IV. SOLAR SYSTEM CONSTRAINTS ON COSMOLOGICALLY VIABLE f(G) MODELS

We will now study some of the cosmologically viable f(G) models considered in [19, 23, 24] and
i) place constraints from the solar system tests as described in the appendix
ii) contrast the solar system constraint to those from cosmological observations looking for what parameter ranges,

if any, the models pass both constraints. The models we consider are:
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Constraints from α λ β Ωm H0 α λ β
Observations Solar System Solar System Solar System Cosmological Cosmological Cosmological Cosmological Cosmological

ZCS −A < 8.11 × 10−8
− < 2.55× 10−29 0.25+0.03

−0.02 72.06+1.63
−2.14 0.00084+0.00016

−0.01632 − −0.03498+0.03595
−0.02399

ZCS −B < 8.11 × 10−8
− < 8.48× 10−56 0.25+0.02

−0.02 71.12+1.81
−1.37 −0.00014+0.000083

−0.001439 − 0.00031+0.03288
−0.76993

ZCS − C < 8.11 × 10−8
− < 1.24× 10−96 0.27+0.02

−0.02 81.51+1.85
−1.74 −0.00012+0.000004

−0.00295 − −0.0000017+0.00012
−0.00142

DFT −A > 0.65 × 10−5 < 1.53 × 105 − 0.25+0.06
−0.02 68.11+11.38

−16.28 54.3437+20.6530
−44.9701 0.0832318+1.81255

−0.058080 −

from αλ = 1

DFT −B > 0.80 × 10−14 < 1.25 × 1014 − 0.25+0.05
−0.02 70.61+8.94

−17.11 9.99891+39.9510
−6.78136 0.313781+1.49185

−0.288712 −

from αλ = 1

TABLE I: Summary of solar system constraints and best-fit parameters for f(G) models from cosmological constraints (su-
pernovae, baryon acoustic oscillations, Hubble Space Telescope Key Project, and CMB surface) as derived in [19]. The solar
system constraints are only listed for the strongest constraints from section IV. For the DFT-A and DFT-B the limit for α is
derived from that of λ.

The best-fit values from cosmology on α and β, see Table I in [19], determine the largest contribution will come from
the last term in (58) and (59). These dominant terms are confirmed in the general analysis of [22]. This allows us to
set bounds on β from solar system constraints, below. Now, we read off from equations (58) and (59), for the ZCS-C
model, the terms for the contribution to the metric as

ΦHOG = −
17βρ9

30
, ΨHOG = −

21βρ9

10
, (60)

for placing bounds on solar system tests.
Again, the bounds from the gravitational redshift can still be applied as in the general case with equation (24),

similar to the models ZCS-A and ZCS-B, but with the value from (60) to give the bound

β < 1.24× 10−96. (61)

For the ZCS-B model, we numerically integrate the contribution for ϑΦHOG,ΨHOG
term in equation (A11) for light

bending tests of the ZCS-B model now with the dominant contributions of ΦHOG and ΨHOG from equations (60)
and the system for ρ0, ρ known, (see section above with same value of ρ0, ρ). This solution is used in the constraint
(A13) to give the bound

β < 2.45× 10−76. (62)

We also numerically integrate (A11) for conditions of the Cassini experiment and the values (60). This solution
combined with the contribution to the bound from equation (A14) using yα < 10−14 gives the bound

β < 4.20× 10−85. (63)

Again, we numerically integrate equation (A17), for the Viking mission to Mars with values from equations (60) and
the situation described earlier. We use the solution to apply the constraint from equation (A19) to give the bound

β < 1.95× 10−80. (64)

For the perihelion shift of the Earth, we use equation (38) find the bound

β < 1.95× 10−87. (65)

These are all satisfied for the constraints on α and β from cosmological distances. Our results are summarized in
Table I.
We also rederived the solar system test constraints on the DFT models and found them in perfect agreement with

those of [20]. These limits are also reported on Table I.
Finally, it is worth mentioning that for the ZCS models that we analyzed above, we could have expanded around

β, as it is found small from the cosmological observations [19]. We did the analysis around β and arrived at exactly
the same limits as above.
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Conclusions 

•  It is important to test modified gravity models 
with both local and cosmological observations 

 
•  The constraints on the parameters fit solar system 

tests and share overlapping parameter space with 
constraints to expansion history that are competitive 
fits to the standard LCDM model 


