Solar System Tests versus Cosmological Constraints for f(G) models

Jacob Moldenhauer Francis Marion University SESAPS 10/21/2011

Cosmic acceleration and Dark Energy Evidence from distances to Supernovae Type Ia (since 1998! About 557 supernovae now!) Supernova 1994D and the Unexpected Universe 30.12.1998

Credit: High-Z Supernova Search Team, HST, NASA

The acceleration of the expansion of the Universe is one of the most challenging and important problems in cosmology

- The observational evidence for cosmic acceleration has continued to grow for the last 12 years
- IMPORTANT: The evidence comes from several independent and complementary cosmological observations.
- Possible explanations:
 - A new form of energy in the universe called Dark Energy, i.e. the Cosmological Constant.

A modification or extension of the gravitational theory at cosmological scales of distances

CMB from the Wilkinson Microwave Anisotropy Probe (WMAP) Homogeneous and isotropic on large scales

BAO from SDSS LRG, 6dFGS and WiggleZ

Standard rulers for measuring the cosmic acceleration from structures of galaxies.

Blake et al. (2011) MNRAS

Observational Tests of Cosmological Models

Blake et al. (2011) MNRAS

Combined constraints from SN, BAO, CMB give support to the standard model in cosmology: Lambda Cold Dark Matter (LCDM) model

Observational Tests of Cosmological Models

LCDM model as the Standard Model of Cosmology.

Other explanations for the cosmic expansion need to be tested.

Let's try some modified gravity models.

Higher Order Gravity (HOG) models

• Einstein-Hilbert action with additional term

$$I = \int d^4x \sqrt{-g} \left[\frac{1}{2}R + f(G) \right] + \int d^4x \sqrt{-g} L^{\text{sources}}$$

• Gauss Bonnet term:

$$G = R^2 - 4R^{\alpha\beta}R_{\alpha\beta} + R^{\alpha\beta\gamma\delta}R_{\alpha\beta\gamma\delta}$$

• New field equations:

 $8[R_{\alpha\gamma\beta\delta} + R_{\gamma\beta}g_{\delta\alpha} - R_{\gamma\delta}g_{\beta\alpha} - R_{\alpha\beta}g_{\delta\gamma} + R_{\alpha\delta}g_{\beta\gamma} + \frac{1}{2}R(g_{\alpha\beta}g_{\delta\gamma} - g_{\alpha\delta}g_{\beta\gamma})]\nabla^{\gamma}\nabla^{\delta}f_{G} + (Gf_{G} - f)g_{\alpha\beta} + R_{\alpha\beta} - \frac{1}{2}g_{\alpha\beta}R = T_{\alpha\beta}^{\text{sources}},$

Gauss Bonnet Models Model ZCS-A: $f(G) = \alpha \sqrt{G} + \beta \sqrt[4]{G}$,

Solve and test with expansion history for FLRW spacetime

Cosmological parameters are constrained within physical limits.

Constraints on Cosmological Models

J. Moldenhauer, et. al., PRD (2010)

Constraints from	χ^2	χ^2/dof	Ω_m	H_0	$\hat{\mu}$	G_0	α	λ	β
Observations									
DFT - A	329.1	1.0754	$0.254939^{+0.049835}_{-0.025707}$	$71.2827^{+11.8991}_{-17.8981}$	$1.4424_{-0.309619}^{+0.356636}$	_	$26.6096\substack{+48.3636\\-21.5027}$	$0.136131^{+1.75928}_{-0.111111}$	_
DFT - A	329.0	1.0751	$0.253516\substack{+0.0607013\\-0.0231282}$	$68.1122_{-16.2845}^{+11.3855}$	_	$.214908_{-0.114864}^{+0.194690}$	$54.3437_{-44.9701}^{+20.6530}$	$0.0832318^{+1.81255}_{-0.058080}$	_
DFT - B	329.4	1.0764	$0.251225\substack{+0.0537648\\-0.0218609}$	$70.6107^{+8.94104}_{-17.1149}$	_	$.253771_{-0.149289}^{+0.155822}$	$9.99891^{+39.9510}_{-6.78136}$	$0.313781^{+1.49185}_{-0.288712}$	_
DFT - C	328.9	1.0748	$0.253603^{+0.049532}_{-0.023303}$	$60.6079^{+9.64599}_{-16.0135}$	_	$.238717_{-0.135459}^{+0.170843}$	$13.9569^{+36.0160}_{-4.56533}$	$0.529189^{+1.36409}_{-0.473996}$	_
ZCS - A	328.2	1.0725	$0.25047^{+0.02857}_{-0.02093}$	$72.066^{+1.6351}_{-2.1441}$	$1.35273^{+0.13186}_{-0.18860}$	_	$0.00084^{+0.00016}_{-0.01632}$	—	$-0.03498^{+0.03595}_{-0.02399}$
ZCS - B	362.4	1.1843	$0.254855_{-0.025755}$	$(1.1289^{+1.81457}_{-1.37513})$	$1.30822^{+0.0448309}_{-0.0363830}$	_	$-0.00014^{+0.000083}_{-0.001439}$	_	$0.00031\substack{+0.03288\\-0.76993}$
ZCS - C	332.4	1.0862	$0.27302\substack{+0.02810\\-0.01934}$	$81.511^{+1.8530}_{-1.7468}$	$1.7754_{-0.07048}^{+0.10141}$	_	$-0.00012\substack{+0.000004\\-0.00295}$	_	$-0.0000017\substack{+0.00012\\-0.00142}$

- All models are within 95% confidence level (except ZCS-B)
- Models are competitive to standard LCDM model
- But, these alternative theories of gravity must also pass local tests of gravity

Solar System Tests

- 1. Gravitational redshift
- 2. Deflection of light
- 3. Time delay
- 4. Cassini effect
- 5. Perihelion shift of planets

Method

• Field equations for GB models with expansion parameter

 $G_{\alpha\beta} + \alpha H_{\alpha\beta} = 0,$

• Contribution from expansion parameter term is small compared to Einstein term,

 $lpha \ll 1$ J. Moldenhauer, et. al., PRD (2010)

Approximation Method

• Spherically symmetric metric with expansion parameter for HOG contribution

$$ds^{2} = -\left(1 - \frac{2G_{N}M}{r} + \Phi_{HOG}(r)\right)dt^{2} + \left(1 - \frac{2G_{N}M}{r} + \Psi_{HOG}(r)\right)^{-1}dr^{2} + r^{2}d\Omega^{2}.$$

- Find contribution from GB model, so it will not rule out the model
- Example: Gravitational redshift measurement

$$\Delta
u_{exp}/\Delta
u_{GR} = 1 \pm 0.0002$$
 Vessot and Levine (1979) GRG

Example

• Gravitational redshift

$$\frac{\rho_2 \rho_1(\Phi_{HOG}(\rho_2) - \Phi_{HOG}(\rho_1))}{\rho_2 - \rho_1} < 2 \times 10^{-4}.$$

where we have used $\rho \equiv r/(2G_NM)$

• Contribution from expansion term

$$\Phi_{HOG} = 2\sqrt{2} \times 3^{3/4} \beta \rho^{3/2}$$

• Constraint on model parameter

 $\beta < 4.41 \times 10^{-28}.$

Results

Constraints from	α	λ	β	Ω_m	H_0	α	λ	β
Observations	Solar System	Solar System	Solar System	Cosmological	Cosmological	Cosmological	Cosmological	Cosmological
ZCS - A	$< 8.11 \times 10^{-8}$	-	$< 2.55 \times 10^{-29}$	$0.25^{+0.03}_{-0.02}$	$72.06^{+1.63}_{-2.14}$	$0.00084^{+0.00016}_{-0.01632}$	-	$-0.03498^{+0.03595}_{-0.02399}$
ZCS - B	$< 8.11 \times 10^{-8}$	_	$< 8.48 \times 10^{-56}$	$0.25^{+0.02}_{-0.02}$	$71.12^{+1.81}_{-1.37}$	$-0.00014\substack{+0.000083\\-0.001439}$	_	$0.00031\substack{+0.03288\\-0.76993}$
ZCS - C	$< 8.11 \times 10^{-8}$	_	$< 1.24 \times 10^{-96}$	$0.27^{+0.02}_{-0.02}$	$81.51_{-1.74}^{+1.85}$	$-0.00012^{+0.000004}_{-0.00295}$	_	$-0.0000017^{+0.00012}_{-0.00142}$
DFT - A	$ > 0.65 \times 10^{-5} $ from $\alpha \lambda = 1 $	$< 1.53 \times 10^{5}$	-	$0.25_{-0.02}^{+0.06}$	$68.11^{+11.38}_{-16.28}$	$54.3437^{+20.6530}_{-44.9701}$	$0.0832318^{+1.81255}_{-0.058086}$	_
DFT - B	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	$< 1.25 \times 10^{14}$	_	$0.25^{+0.05}_{-0.02}$	$70.61_{-17.11}^{+8.94}$	$9.99891^{+39.9510}_{-6.78136}$	$0.313781^{+1.49185}_{-0.288712}$	_

TABLE I: Summary of solar system constraints and best-fit parameters for f(G) models from cosmological constraints (supernovae, baryon acoustic oscillations, Hubble Space Telescope Key Project, and CMB surface) as derived in [19]. The solar system constraints are only listed for the strongest constraints from section IV. For the DFT-A and DFT-B the limit for α is derived from that of λ .

Conclusions

- The constraints on the parameters fit solar system tests and share overlapping parameter space with constraints to expansion history that are competitive fits to the standard LCDM model
- It is important to test modified gravity models with both local and cosmological observations

