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Borexino 
Location 

Laboratori Nazionali del Gran Sasso 

Borexino detector is located in the Apennine 
mountains,  with an access through one of the 
longest underground tunnels in the world. 
 
Over a kilometer of limestone rock provide pristine 
muon shielding for the data 



Borexino 
               Principles of graded shielding 

o 3600 m.w.e of rock  (μ) 
 
o Cherenkov water detector 

 
o Inner PMTs (Rn emanation) 

 
o Quenched scintillator 

 
o Active scintillator 

 
o Fiducial mass (γ) 

 
o Fast neutrons 

μ n 

γ 

α,β 
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Radio-purity 

Contamination Required Achieved Technique 

14C/12C <5∙10-18 2.7∙10-18 Crude oil / underground src 

238U <10-16 g/g 1.6∙10-17 g/g Water extraction / Distillation 

232Th <10-16 g/g 6.8∙10-18 g/g Water extraction / Distillation 

222Rn <1 mBq/t <1 mBq/t  Materials low in 226Ra 

210Po  <1 mBq/t initially ~1 mBq/t Distillation, Decay(tH=138 d) 

85Kr <0.1 mBq/t ~3 mBq/t LAKN sparging 

• ν-e scattering effect 
• Indistinguishable from β/γ 
   backgrounds 
• No directional signal 

Critical to achieve lowest 
background levels 

UV 

Requirements 
Interaction Scintillation 
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Calibration 

• Understanding detector’s response: position, energy, α/β  discrimination 
• Study Trigger Efficiency and PMT timing alignment 
• Determine Fiducial Volume  

Type γ β α n 

Src. 57Co 139Ce 203Hg 85Sr 54Mn 65Zn 60Co 40K 14C 214Bi 214Po n-p n-12C n-Fe 

MeV 0.122 0.165 0.279 0.514 0.834 1.1 
1.1, 
1.3 

1.4 0.15 3.2 
7.69 

(0.84) 
2.23 4.94 ~7.5 

Above all, preserve radio-purity 

Source location based on CCD cameras 
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Systematics 
Livetime 0.1% 0.04% 

Scintillator ρ 0.2% 0.05% 

Event Selection Loss 0.3% 0.1% 

Position 
Reconstruction 

6.0% 
-1.3% 
+0.5% 

Energy Scale 6.0% 2.7% 

TOTAL 8.5% 
-3.6% 
+3.4% 



Major goal is to measure the 7Be monochromatic line 
Total flux of 4.48±0.31 x 109 /cm2/sec 

Phase II also aims for measurement of the CNO lines 
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• Major cuts : 
 

1) Muons, and 
 fast cosmogenics, 
 
 Electronics noise 
 
2) Foducial Volume 
 1/3 active mass 
 
3) α- subtraction  
 (Gatti parameter) 

Total of 15 fine cuts remove noise and background events. 

Spectrum 
Selection of events 

γ from external src. 

210Po – α subtracted 

11C 
7Be 
shoulder 

14C 

Raw photoelectron charge spectrum 

~740days 



7Be Results 
Consistent  

MonteCarlo and Analytical Fits 
 

Measured Rate: 
7Be: 46.0 ±1.5stat

+1.5
-1.6 sys cpd/100t 

SSM w/ no 
oscillations, 
HMetallicity 
74 ± 5.2theor 

MSW-LMA 
Prediction  
 
47.5 ± 3.4 

MSW-LMA scenario: 
Φ (7Be) = (4.84 ± 0.24) X 109 /cm2/sec 

fBe=0.97 ± 0.09 

Analytical 

MonteCarlo 



Beyond 7Be 
SSM constraints 
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For the first time in Borexino 
 

Prompt, Delayed Event  
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PEP 

For the first time in Borexino 
 

Prompt, Delayed Event  

Completed the transition region The first 8B to be measured with a 
Liquid Scintillator Detector 

 
Lowest threshold of 3 MeV 



Astronomy 

Seasonal Modulation 

P-to-P 7% amplitude modulation An ellipse of (current)  ε = 0.0167 

“Normal” oscillations: 
MSW : ~1/r2 

“Anomalous” oscillations: 
Vacuum : ~1/r2 

Super-Kamiokande (8B): 
ε = 0.0252±0.0072 

SNO Collaboration (8B): 
ε = 0.0143±0.0086 



Astrophysics 

Seasonal Modulation 



Future 
• Borexino detector underwent a vast purification campaign during 2011, that 
resulted in a significant reduction of the 85Kr and 210Bi  backgrounds. As a result, it is 
believed that the next three years, of phase II, will deliver pristine quality of data for 
further PEP/CNO study, as well as the seasonal variation analysis.  
 

 
 
 
 
 
 
 
• The ultimate goal of Borexino it is to measure the 7B line with a lower than 3% 
precision, that will be required for the calibration of the future LENS solar neutrino 
detector.  
 

• Borexino is also part of the “SuperNova Early Warning System” (SNEWS) 
  (~90% duty cycle) 

• Precision determination of the nylon 
vessel position in Borexino will allow up 
to 100% increase in the available 
statistics, improving the signal count 
rate with stable background. 
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